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PREFACE

The social, behavioral, and health sciences have a need for the ability to use non-
parametric statistics in research. Many studies in these areas involve data that are 
classified in the nominal or ordinal scale. At times, interval data from these fields 
lack parameters for classification as normal. Nonparametric statistical tests are useful 
tools for analyzing such data.

Purpose of This Book

This book is intended to provide a conceptual and procedural approach for nonpara-
metric statistics. It is written so that someone who does not have an extensive 
mathematical background may work through the process necessary to conduct the 
given statistical tests presented. In addition, the outcome includes a discussion of 
the final decision for each statistical test. Each chapter takes the reader through an 
example from the beginning hypotheses, through the statistical calculations, to the 
final decision as compared with the hypothesis. The examples are then followed by 
a detailed, step-by-step analysis using the computer program SPSS®. Finally, research 
literature is identified which uses the respective nonparametric statistical tests.

Intended Audience

While not limited to such, this book is written for graduate and undergraduate stu-
dents in social science programs. As stated earlier, it is targeted toward the student 
who does not have an especially strong mathematical background, but can be used 
effectively with a mixed group of students that includes students who have both 
strong and weak mathematical background.

Special Features of This Book

There are currently few books available that provide a practical and applied approach 
to teaching nonparametric statistics. Many books take a more theoretical approach 
to the instructional process that can leave students disconnected and frustrated, in 
need of supplementary material to give them the ability to apply the statistics taught.

It is our hope and expectation that this book provides students with a concrete 
approach to performing the nonparametric statistical procedures, along with their 
application and interpretation. We chose these particular nonparametric procedures 
since they represent a breadth of the typical types of analyses found in social science 
research. It is our hope that students will confidently learn the content presented 
with the promise of future successful applications.

ix
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In addition, each statistical test includes a section that explains how to use the 
computer program SPSS. However, the organization of the book provides effective 
instruction of the nonparametric statistical procedures for those individuals with or 
without the software. Therefore, instructors (and students) can focus on learning the 
tests with a calculator, SPSS, or both.

A Note to the Student

We have written this book with you in mind. Each of us has had a great deal of 
experience working with students just like you. Over the course of that time, it has 
been our experience that most people outside of the fields of mathematics or hard 
sciences struggle with and are intimidated by statistics. Moreover, we have found 
that when statistical procedures are explicitly communicated in a step-by-step 
manner, almost anyone can use them.

This book begins with a brief introduction (Chapter 1) and is followed with 
an explanation of how to perform the crucial step of checking your data for normality 
(Chapter 2). The chapters that follow (Chapters 3–9) highlight several nonparametric 
statistical procedures. Each of those chapters focuses on a particular type of variable 
and/or sample condition.

Chapters 3–9 each have a similar organization. They each explain the statistical 
methods included in their respective chapters. At least one sample problem is 
included for each test using a step-by-step approach. (In some cases, we provide 
additional sample problems when procedures differ between large and small sam-
ples.) Then, those same sample problems are demonstrated using the statistical 
software package SPSS. Whether or not your instructor incorporates SPSS, this 
section will give you the opportunity to learn how to use the program. Toward the 
end of each chapter, we identify examples of the tests in published research. Finally, 
we present sample problems with solutions.

As you seek to learn nonparametric statistics, we strongly encourage you to 
work through the sample problems. Then, using the sample problems as a reference, 
work through the problems at the end of the chapters and additional data sets 
provided.

New to the Second Edition

Given an opportunity to write a second edition of this book, we revised and expanded 
several portions. Our changes are based on feedback from users and reviewers.

We asked several undergraduate and graduate students for feedback on Chap-
ters 1 and 2. Based on their suggestions, we made several minor changes to Chapter 
1 with a goal to improve understanding. In Chapter 2, we expanded the section that 
describes and demonstrates the Kolmogorov–Smirnov (K-S) one-sample test.

After examining current statistics textbooks and emerging research paper, we 
decided to include two additional tests. We added the sign test to Chapter 3 and the 
Kolmogorov–Smirnov (K-S) two-sample test to Chapter 4. We also added a discus-
sion on statistical power to Chapter 3 as requested by instructors who had adopted 
our book for their courses.
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Since our book’s first edition, SPSS has undergone several version updates. 
Our new edition of the book also has updated directions and screen captures for 
images of SPSS. Specifically, these changes reflect SPSS version 21.

We have included web-based tools to support our book’s new edition. If you 
visit the publisher’s book support website, you will find a link to a Youtube channel 
that includes narrated screen casts. The screen casts demonstrate how to use SPSS 
to perform the tests included in this book. The publisher’s book support website also 
includes a link to a decision tree that helps the user determine an appropriate type 
of statistical test. The decision tree is organized using Prezi. The branches terminate 
with links to the screen casts on YouTube.

Gregory W. Corder
Dale I. Foreman
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CHAPTER 1
NONPARAMETRIC STATISTICS: 
AN INTRODUCTION

1.1 OBJECTIVES

In this chapter, you will learn the following items:

•	 The difference between parametric and nonparametric statistics.

•	 How to rank data.

•	 How to determine counts of observations.

1.2 INTRODUCTION

If you are using this book, it is possible that you have taken some type of introduc-
tory statistics class in the past. Most likely, your class began with a discussion about 
probability and later focused on particular methods of dealing with populations and 
samples. Correlations, z-scores, and t-tests were just some of the tools you might 
have used to describe populations and/or make inferences about a population using 
a simple random sample.

Many of the tests in a traditional, introductory statistics text are based on 
samples that follow certain assumptions called parameters. Such tests are called 
parametric tests. Specifically, parametric assumptions include samples that

•	 are randomly drawn from a normally distributed population,

•	 consist of independent observations, except for paired values,

•	 consist of values on an interval or ratio measurement scale,

•	 have respective populations of approximately equal variances,

•	 are adequately large,* and

•	 approximately resemble a normal distribution.

1

*The minimum sample size for using a parametric statistical test varies among texts. For example, Pett 
(1997) and Salkind (2004) noted that most researchers suggest n > 30. Warner (2008) encouraged con-
sidering n > 20 as a minimum and n > 10 per group as an absolute minimum.
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If any of your samples breaks one of these rules, you violate the assumptions of a 
parametric test. You do have some options, however.

You might change the nature of your study so that your data meet the needed 
parameters. For instance, if you are using an ordinal or nominal measurement scale, 
you might redesign your study to use an interval or ratio scale. (See Box 1.1 for a 
description of measurement scales.) Also, you might seek additional participants to 
enlarge your sample sizes. Unfortunately, there are times when one or neither of 
these changes is appropriate or even possible.

BOX 1.1 

MEASUREMENT SCALES.

We can measure and convey variables in several ways. Nominal data, also called categori-
cal data, are represented by counting the number of times a particular event or condition 
occurs. For example, you might categorize the political alignment of a group of voters. 
Group members could either be labeled democratic, republican, independent, undecided, 
or other. No single person should fall into more than one category.

A dichotomous variable is a special classification of nominal data; it is simply a 
measure of two conditions. A dichotomous variable is either discrete or continuous. A 
discrete dichotomous variable has no particular order and might include such examples as 
gender (male vs. female) or a coin toss (heads vs. tails). A continuous dichotomous vari-
able has some type of order to the two conditions and might include measurements such 
as pass/fail or young/old.

Ordinal scale data describe values that occur in some order of rank. However, distance 
between any two ordinal values holds no particular meaning. For example, imagine lining 
up a group of people according to height. It would be very unlikely that the individual 
heights would increase evenly. Another example of an ordinal scale is a Likert-type scale. 
This scale asks the respondent to make a judgment using a scale of three, five, or seven 
items. The range of such a scale might use a 1 to represent strongly disagree while a 5 
might represent strongly agree. This type of scale can be considered an ordinal measure-
ment since any two respondents will vary in their interpretation of scale values.

An interval scale is a measure in which the relative distances between any two sequen-
tial values are the same. To borrow an example from the physical sciences, we consider 
the Celsius scale for measuring temperature. An increase from −8 to −7°C degrees is 
identical to an increase from 55 to 56°C.

A ratio scale is slightly different from an interval scale. Unlike an interval scale, a ratio 
scale has an absolute zero value. In such a case, the zero value indicates a measurement 
limit or a complete absence of a particular condition. To borrow another example from the 
physical sciences, it would be appropriate to measure light intensity with a ratio scale. 
Total darkness is a complete absence of light and would receive a value of zero.

On a general note, we have presented a classification of measurement scales similar to 
those used in many introductory statistics texts. To the best of our knowledge, this hierar-
chy of scales was first made popular by Stevens (1946). While Stevens has received agree-
ment (Stake, 1960; Townsend & Ashby, 1984) and criticism (Anderson, 1961; Gaito, 1980; 
Velleman & Wilkinson, 1993), we believe the scale classification we present suits the 
nature and organization of this book. We direct anyone seeking additional information on 
this subject to the preceding citations.
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*Malthouse (2001) and Osborne and Overbay (2004) presented discussions about the removal of 
outliers.

If your samples do not resemble a normal distribution, you might have learned 
a strategy that modifies your data for use with a parametric test. First, if you can 
justify your reasons, you might remove extreme values from your samples called 
outliers. For example, imagine that you test a group of children and you wish to 
generalize the findings to typical children in a normal state of mind. After you collect 
the test results, most children earn scores around 80% with some scoring above and 
below the average. Suppose, however, that one child scored a 5%. If you find that 
this child speaks no English because he arrived in your country just yesterday, it 
would be reasonable to exclude his score from your analysis. Unfortunately, outlier 
removal is rarely this straightforward and deserves a much more lengthy discussion 
than we offer here.* Second, you might utilize a parametric test by applying a math-
ematical transformation to the sample values. For example, you might square every 
value in a sample. However, some researchers argue that transformations are a form 
of data tampering or can distort the results. In addition, transformations do not 
always work, such as circumstances when data sets have particularly long tails. 
Third, there are more complicated methods for analyzing data that are beyond the 
scope of most introductory statistics texts. In such a case, you would be referred to 
a statistician.

Fortunately, there is a family of statistical tests that do not demand all the 
parameters, or rules, that we listed earlier. They are called nonparametric tests, and 
this book will focus on several such tests.

1.3 THE NONPARAMETRIC STATISTICAL 
PROCEDURES PRESENTED IN THIS BOOK

This book describes several popular nonparametric statistical procedures used in 
research today. Table 1.1 identifies an overview of the types of tests presented in 
this book and their parametric counterparts.

TABLE 1.1

Type of analysis Nonparametric test Parametric equivalent

Comparing two related 
samples

Wilcoxon signed ranks test 
and sign test

t-Test for dependent 
samples

Comparing two unrelated 
samples

Mann–Whitney U-test and 
Kolmogorov–Smirnov 
two-sample test

t-Test for independent 
samples

Comparing three or more 
related samples

Friedman test Repeated measures, analysis 
of variance (ANOVA)

Comparing three or more 
unrelated samples

Kruskal–Wallis H-test One-way ANOVA

(Continued)
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When demonstrating each nonparametric procedure, we will use a particular 
step-by-step method.

1.3.1 State the Null and Research Hypotheses

First, we state the hypotheses for performing the test. The two types of hypotheses 
are null and alternate. The null hypothesis (HO) is a statement that indicates no dif-
ference exists between conditions, groups, or variables. The alternate hypothesis 
(HA), also called a research hypothesis, is the statement that predicts a difference or 
relationship between conditions, groups, or variables.

The alternate hypothesis may be directional or nondirectional, depending on 
the context of the research. A directional, or one-tailed, hypothesis predicts a statisti-
cally significant change in a particular direction. For example, a treatment that 
predicts an improvement would be directional. A nondirectional, or two-tailed, 
hypothesis predicts a statistically significant change, but in no particular direction. 
For example, a researcher may compare two new conditions and predict a difference 
between them. However, he or she would not predict which condition would show 
the largest result.

1.3.2 Set the Level of Risk (or the Level of Significance) 
Associated with the Null Hypothesis

When we perform a particular statistical test, there is always a chance that our result 
is due to chance instead of any real difference. For example, we might find that two 
samples are significantly different. Imagine, however, that no real difference exists. 
Our results would have led us to reject the null hypothesis when it was actually true. 
In this situation, we made a type I error. Therefore, statistical tests assume some 
level of risk that we call alpha, or α.

Type of analysis Nonparametric test Parametric equivalent

Comparing categorical data Chi square (χ2) tests and 
Fisher exact test

None

Comparing two rank-ordered 
variables

Spearman rank-order 
correlation

Pearson product–moment 
correlation

Comparing two variables when 
one variable is discrete 
dichotomous

Point-biserial correlation Pearson product–moment 
correlation

Comparing two variables when 
one variable is continuous 
dichotomous

Biserial correlation Pearson product–moment 
correlation

Examining a sample for 
randomness

Runs test None

TABLE 1.1 (Continued)
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There is also a chance that our statistical results would lead us to not reject 
the null hypothesis. However, if a real difference actually does exist, then we made 
a type II error. We use the Greek letter beta, β, to represent a type II error. See Table 
1.2 for a summary of type I and type II errors.

TABLE 1.2 

We do not reject the null 
hypothesis

We reject the null 
hypothesis

The null hypothesis is actually true No error Type-I error, α
The null hypothesis is actually false Type-II error, β No error

After the hypotheses are stated, we choose the level of risk (or the level of 
significance) associated with the null hypothesis. We use the commonly accepted 
value of α = 0.05. By using this value, there is a 95% chance that our statistical 
findings are real and not due to chance.

1.3.3 Choose the Appropriate Test Statistic

We choose a particular type of test statistic based on characteristics of the data. For 
example, the number of samples or groups should be considered. Some tests are 
appropriate for two samples, while other tests are appropriate for three or more 
samples.

Measurement scale also plays an important role in choosing an appropriate 
test statistic. We might select one set of tests for nominal data and a different set for 
ordinal variables. A common ordinal measure used in social and behavioral science 
research is the Likert scale. Nanna and Sawilowsky (1998) suggested that nonpara-
metric tests are more appropriate for analyses involving Likert scales.

1.3.4 Compute the Test Statistic

The test statistic, or obtained value, is a computed value based on the particular test 
you need. Moreover, the method for determining the obtained value is described in 
each chapter and varies from test to test. For small samples, we use a procedure 
specific to a particular statistical test. For large samples, we approximate our data 
to a normal distribution and calculate a z-score for our data.

1.3.5 Determine the Value Needed for Rejection of the Null 
Hypothesis Using the Appropriate Table of Critical Values for 
the Particular Statistic

For small samples, we reference a table of critical values located in Appendix B. 
Each table provides a critical value to which we compare a computed test statistic. 
Finding a critical value using a table may require you to use such data characteristics 
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as the degrees of freedom, number of samples, and/or number of groups. In addition, 
you may need the desired level of risk, or alpha (α).

For large samples, we determine a critical region based on the level of risk (or 
the level of significance) associated with the null hypothesis, α. We will determine 
if the computed z-score falls within a critical region of the distribution.

1.3.6 Compare the Obtained Value with the Critical Value

Comparing the obtained value with the critical value allows us to identify a differ-
ence or relationship based on a particular level of risk. Once this is accomplished, 
we can state whether we must reject or must not reject the null hypothesis. While 
this type of phrasing may seem unusual, the standard practice in research is to state 
results in terms of the null hypothesis.

Some of the critical value tables are limited to particular sample or group 
size(s). When a sample size exceeds a table’s range of value(s), we approximate our 
data to a normal distribution. In such cases, we use Table B.1 in Appendix B to 
establish a critical region of z-scores. Then, we calculate a z-score for our data and 
compare it with a critical region of z-scores. For example, if we use a two-tailed test 
with α = 0.05, we do not reject the null hypothesis if the z-score is between −1.96 
and +1.96. In other words, we do not reject if the null hypothesis if −1.96 ≤ z ≤ 1.96.

1.3.7 Interpret the Results

We can now give meaning to the numbers and values from our analysis based on 
our context. If sample differences were observed, we can comment on the strength 
of those differences. We can compare the observed results with the expected results. 
We might examine a relationship between two variables for its relative strength or 
search a series of events for patterns.

1.3.8 Reporting the Results

Communicating results in a meaningful and comprehensible manner makes our 
research useful to others. There is a fair amount of agreement in the research litera-
ture for reporting statistical results from parametric tests. Unfortunately, there is less 
agreement for nonparametric tests. We have attempted to use the more common 
reporting techniques found in the research literature.

1.4 RANKING DATA

Many of the nonparametric procedures involve ranking data values. Ranking values 
is really quite simple. Suppose that you are a math teacher and wanted to find out 
if students score higher after eating a healthy breakfast. You give a test and compare 
the scores of four students who ate a healthy breakfast with four students who did 
not. Table 1.3 shows the results.
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To rank all of the values from Table 1.3 together, place them all in order in a 
new table from smallest to largest (see Table 1.4). The first value receives a rank of 
1, the second value receives a rank of 2, and so on.

TABLE 1.3 

Students who ate breakfast Students who skipped breakfast

87 93

96 83

92 79

84 73

TABLE 1.4 

Value Rank

73 1

79 2

83 3

84 4

87 5

92 6

93 7

96 8

TABLE 1.5 

Students who ate breakfast Students who skipped breakfast

90 75

85 80

95 55

70 90

Notice that the values for the students who ate breakfast are in bold type. On 
the surface, it would appear that they scored higher. However, if you are seeking 
statistical significance, you need some type of procedure. The following chapters 
will offer those procedures.

1.5 RANKING DATA WITH TIED VALUES

The aforementioned ranking method should seem straightforward. In many cases, 
however, two or more of the data values may be repeated. We call repeated values 
ties, or tied values. Say, for instance, that you repeat the preceding ranking with a 
different group of students. This time, you collected new values shown in Table 1.5.
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Rank the values as in the previous example. Notice that the value of 90 is 
repeated. This means that the value of 90 is a tie. If these two student scores were 
different, they would be ranked 6 and 7. In the case of a tie, give all of the tied values 
the average of their rank values. In this example, the average of 6 and 7 is 6.5 (see 
Table 1.6).

TABLE 1.6 

Value
Rank ignoring tied 

values
Rank accounting for tied 

values

55 1 1

70 2 2

75 3 3

80 4 4

85 5 5

90 6 6.5
90 7 6.5
95 8 8

Most nonparametric statistical tests require a different formula when a sample 
of data contains ties. It is important to note that the formulas for ties are more alge-
braically complex. What is more, formulas for ties typically produce a test statistic 
that is only slightly different from the test statistic formulas for data without ties. It 
is probably for this reason that most statistics texts omit the formulas for tied values. 
As you will see, however, we include the formulas for ties along with examples 
where applicable.

When the statistical tests in this book are explained using the computer 
program SPSS® (Statistical Package for Social Scientists), there is no mention of 
any special treatment for ties. That is because SPSS automatically detects the pres-
ence of ties in any data sets and applies the appropriate procedure for calculating 
the test statistic.

1.6 COUNTS OF OBSERVATIONS

Some nonparametric tests require counts (or frequencies) of observations. Determin-
ing the count is fairly straightforward and simply involves counting the total number 
of times a particular observations is made. For example, suppose you ask several 
children to pick their favorite ice cream flavor given three choices: vanilla, chocolate, 
and strawberry. Their preferences are shown in Table 1.7.

To find the counts for each ice cream flavor, list the choices and tally the total 
number of children who picked each flavor. In other words, count the number of 
children who picked chocolate. Then, repeat for the other choices, vanilla and straw-
berry. Table 1.8 reveals the counts from Table 1.7.
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TABLE 1.7 

Participant Flavor

1 Chocolate

2 Chocolate

3 Vanilla

4 Vanilla

5 Strawberry

6 Chocolate

7 Chocolate

8 Vanilla

TABLE 1.8 

Flavor Count

Chocolate 4

Vanilla 3

Strawberry 1

To check your accuracy, you can add all the counts and compare them with 
the number of participants. The two numbers should be the same.

1.7 SUMMARY

In this chapter, we described differences between parametric and nonparametric 
tests. We also addressed assumptions by which nonparametric tests would be favor-
able over parametric tests. Then, we presented an overview of the nonparametric 
procedures included in this book. We also described the step-by-step approach we 
use to explain each test. Finally, we included explanations and examples of ranking 
and counting data, which are two tools for managing data when performing particu-
lar nonparametric tests.

The chapters that follow will present step-by-step directions for performing 
these statistical procedures both by manual, computational methods and by computer 
analysis using SPSS. In the next chapter, we address procedures for comparing data 
samples with a normal distribution.

1.8 PRACTICE QUESTIONS

1. Male high school students completed the 1-mile run at the end of their 9th grade 
and the beginning of their 10th grade. The following values represent the differ-
ences between the recorded times. Notice that only one student’s time improved 
(−2 : 08). Rank the values in Table 1.9 beginning with the student’s time differ-
ence that displayed improvement.
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2. The values in Table 1.10 represent weekly quiz scores on math. Rank the quiz scores.

TABLE 1.9 

Participant Value Rank

 1 0 : 36

 2 0 : 28

 3 1 : 41

 4 0 : 37

 5 1 : 01

 6 2 : 30

 7 0 : 44

 8 0 : 47

 9 0 : 13

10 0 : 24

11 0 : 51

12 0 : 09

13 −2 : 08

14 0 : 12

15 0 : 56

TABLE 1.10 

Participant Score Rank

 1 100

 2 60

 3 70

 4 90

 5 80

 6 100

 7 80

 8 20

 9 100

10 50

3. Using the data from the previous example, what are the counts (or frequencies) 
of passing scores and failing scores if a 70 is a passing score?

1.9 SOLUTIONS TO PRACTICE QUESTIONS  

1. The value ranks are listed in Table 1.11. Notice that there are no ties.

2. The value ranks are listed in Table 1.12. Notice the tied values. The value of 80 
occurred twice and required averaging the rank values of 5 and 6.
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TABLE 1.11 

Participant Value Rank

 1 0 : 36 7

 2 0 : 28 6

 3 1 : 41 14

 4 0 : 37 8

 5 1 : 01 13

 6 2 : 30 15

 7 0 : 44 9

 8 0 : 47 10

 9 0 : 13 4

10 0 : 24 5

11 0 : 51 11

12 0 : 09 2

13 −2 : 08 1

14 0 : 12 3

15 0 : 56 12

TABLE 1.12 

Participant Score Rank

 1 100 9
 2 60 3

 3 70 4

 4 90 7

 5 80 5.5
 6 100 9
 7 80 5.5
 8 20 1

 9 100 9
10 50 2

 ( ) .5 6 2 5 5+ ÷ =

The value of 100 occurred three times and required averaging the rank values of 
8, 9, and 10.

 ( )8 9 10 3 9+ + ÷ =

3. Table 1.13 shows the passing scores and failing scores using 70 as a passing score. 
The counts (or frequencies) of passing scores is npassing = 7. The counts of failing 
scores is nfailing = 3.
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TABLE 1.13  

Participant Score Pass/Fail

 1 100 Pass

 2 60 Fail

 3 70 Pass

 4 90 Pass

 5 80 Pass

 6 100 Pass

 7 80 Pass

 8 20 Fail

 9 100 Pass

10 50 Fail
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CHAPTER 2
TESTING DATA FOR NORMALITY

2.1 OBJECTIVES

In this chapter, you will learn the following items:

•	 How to find a data sample’s kurtosis and skewness and determine if the 
sample meets acceptable levels of normality.

•	 How to use SPSS® to find a data sample’s kurtosis and skewness and deter-
mine if the sample meets acceptable levels of normality.

•	 How to perform a Kolmogorov–Smirnov one-sample test to determine if a 
data sample meets acceptable levels of normality.

•	 How to use SPSS to perform a Kolmogorov–Smirnov one-sample test to 
determine if a data sample meets acceptable levels of normality.

2.2 INTRODUCTION

Parametric statistical tests, such as the t-test and one-way analysis of variance, are 
based on particular assumptions or parameters. The data samples meeting those 
parameters are randomly drawn from a normal population, based on independent 
observations, measured with an interval or ratio scale, possess an adequate sample 
size (see Chapter 1), and approximately resemble a normal distribution. Moreover, 
comparisons of samples or variables should have approximately equal variances. If 
data samples violate one or more of these assumptions, you should consider using 
a nonparametric test.

Examining the data gathering method, scale type, and size of a sample are 
fairly straightforward. However, examining a data sample’s resemblance to a normal 
distribution, or its normality, requires a more involved analysis. Visually inspecting 
a graphical representation of a sample, such as a stem and leaf plot or a box and 
whisker plot, might be the most simplistic examination of normality. Statisticians 
advocate this technique in beginning statistics; however, this measure of normality 
does not suffice for strict levels of defensible analyses.

13
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In this chapter, we present three quantitative measures of sample normality. 
First, we discuss the properties of the normal distribution. Then, we describe how 
to examine a sample’s kurtosis and skewness. Next, we describe how to perform and 
interpret a Kolmogorov–Smirnov one-sample test. In addition, we describe how to 
perform each of these procedures using SPSS.

2.3 DESCRIBING DATA AND THE NORMAL 
DISTRIBUTION

An entire chapter could easily be devoted to the description of data and the normal 
distribution and many books do so. However, we will attempt to summarize the 
concept and begin with a practical approach as it applies to data collection.

In research, we often identify some population we wish to study. Then, we 
strive to collect several independent, random measurements of a particular variable 
associated with our population. We call this set of measurements a sample. If we 
used good experimental technique and our sample adequately represents our popula-
tion, we can study the sample to make inferences about our population. For example, 
during a routine checkup, your physician draws a sample of your blood instead of 
all of your blood. This blood sample allows your physician to evaluate all of your 
blood even though he or she only tested the sample. Therefore, all of your body’s 
blood cells represent the population about which your physician makes an inference 
using only the sample.

While a blood sample leads to the collection of a very large number of blood 
cells, other fields of study are limited to small sample sizes. It is not uncommon to 
collect less than 30 measurements for some studies in the behavioral and social sci-
ences. Moreover, the measurements lie on some scale over which the measurements 
vary about the mean value. This notion is called variance. For example, a researcher 
uses some instrument to measure the intelligence of 25 children in a math class. It 
is highly unlikely that every child will have the same intelligence level. In fact, a 
good instrument for measuring intelligence should be sensitive enough to measure 
differences in the levels of the children.

The variance s2 can be expressed quantitatively. It can be calculated using 
Formula 2.1:

 s
x x

n

i2

2

1
=

−

−
∑( )

 (2.1)

where xi is an individual value in the distribution, x  is the distribution’s mean, and 
n is the number of values in the distribution

As mentioned in Chapter 1, parametric tests assume that the variances of 
samples being compared are approximately the same. This idea is called homogene-
ity of variance. To compare sample variances, Field (2005) suggested that we obtain 
a variance ratio by taking the largest sample variance and dividing it by the smallest 
sample variance. The variance ratio should be less than 2. Similarly, Pett (1997) indicated 
that no sample’s variance be twice as large as any other sample’s variance. If the 
homogeneity of variance assumption cannot be met, one would use a nonparametric test.
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A more common way of expressing a sample’s variability is with its standard 
deviation, s. Standard deviation is the square root of variance where s s= 2 . In 
other words, standard deviation is calculated using Formula 2.2:

 s
x x

n

i
=

−

−
∑( )2

1
 (2.2)

As illustrated in Figure 2.1, a small standard deviation indicates that a sample’s 
values are fairly concentrated about its mean, whereas a large standard deviation 
indicates that a sample’s values are fairly spread out.

FIGURE 2.1
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A histogram is a useful tool for graphically illustrating a sample’s frequency 
distribution and variability (see Fig. 2.2). This graph plots the value of the measure-
ments horizontally and the frequency of each particular value vertically. The middle 
value is called the median and the greatest frequency is called the mode.
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The mean and standard deviation of one distribution differ from the next. If 
we want to compare two or more samples, then we need some type of standard. A 
standard score is a way we can compare multiple distributions. The standard score 
that we use is called a z-score, and it can be calculated using Formula 2.3:

 z
x x

s
i=
−

 (2.3)

where xi is an individual value in the distribution, x  is the distribution’s mean, and 
s is the distribution’s standard deviation.

There is a useful relationship between the standard deviation and z-score. We 
can think of the standard deviation as a unit of horizontal distance away from the 
mean on the histogram. One standard deviation from the mean is the same as z = 1.0. 
Two standard deviations from the mean are the same as z =  2.0. For example, if 
s = 10 and x = 70  for a distribution, then z = 1.0 at x = 80 and z = 2.0 at x = 90. 
What is more, z-scores that lie below the mean have negative values. Using our 
example, z = −1.0 at x = 60 and z = −2.0 at x = 50. Moreover, z = 0.0 at the 
mean value, x = 70. These z-scores can be used to compare our distribution with 
another distribution, even if the mean and standard deviation are different. In other 
words, we can compare multiple distributions in terms of z-scores.

To this point, we have been focused on distributions with finite numbers of 
values, n. As more data values are collected for a given distribution, the histogram 
begins to resemble a bell shape called the normal curve. Figure 2.3 shows the rela-
tionship among the raw values, standard deviation, and z-scores of a population. 
Since we are describing a population, we use sigma, σ, to represent standard devia-
tion and mu, μ, to represent the mean.

FIGURE 2.3

The normal curve has three particular properties (see Fig. 2.4). First, the mean, 
median, and mode are equal. Thus, most of the values lie in the center of the distri-
bution. Second, the curve displays perfect symmetry about the mean. Third, the left 
and right sides of the curve, called the tails, are asymptotic. This means that they 
approach the horizontal axis, but never touch it.
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FIGURE 2.4
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When we use a normal curve to represent probabilities p, we refer to it as the 
normal distribution. We set the area under the curve equal to p  =  1.0. Since the 
distribution is symmetrical about the mean, p = 0.50 on the left side of the mean 
and p = 0.50 on the right. In addition, the ordinate of the normal curve, y, is the 
height of the curve at a particular point. The ordinate is tallest at the curve’s center 
and decreases as you move away from the center. Table B.1 in Appendix B provides 
the z-scores, probabilities, and ordinates for the normal distribution.

2.4 COMPUTING AND TESTING KURTOSIS AND 
SKEWNESS FOR SAMPLE NORMALITY

A frequency distribution that resembles a normal curve is approximately normal. 
However, not all frequency distributions have the approximate shape of a normal 
curve. The values might be densely concentrated in the center or substantially spread 
out. The shape of the curve may lack symmetry with many values concentrated on 
one side of the distribution. We use the terms kurtosis and skewness to describe these 
conditions, respectively.

Kurtosis is a measure of a sample or population that identifies how flat or 
peaked it is with respect to a normal distribution. Stated another way, kurtosis refers 
to how concentrated the values are in the center of the distribution. As shown in 
Figure 2.5, a peaked distribution is said to be leptokurtic. A leptokurtic distribution 
has a positive kurtosis. If a distribution is flat, it is said to be platykurtic. A platykurtic 
distribution has a negative kurtosis.

The skewness of a sample can be described as a measure of horizontal sym-
metry with respect to a normal distribution. As shown in Figure 2.6, if a distribution’s 
scores are concentrated on the right side of the curve, it is said to be left skewed. A 
left skewed distribution has a negative skewness. If a distribution’s scores are con-
centrated on the left side of the curve, it is said to be right skewed. A right skewed 
distribution has a positive skewness.
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The kurtosis and skewness can be used to determine if a sample approximately 
resembles a normal distribution. There are five steps for examining sample normality 
in terms of kurtosis and skewness.

1. Determine the sample’s mean and standard deviation.

2. Determine the sample’s kurtosis and skewness.

3. Calculate the standard error of the kurtosis and the standard error of the 
skewness.

4. Calculate the z-score for the kurtosis and the z-score for the skewness.

5. Compare the z-scores with the critical region obtained from the normal 
distribution.

The calculations to find the values for a distribution’s kurtosis and skewness require 
you to first find the sample mean x  and the sample standard deviation s. Recall 
that standard deviation is found using Formula 2.2. The mean is found using  
Formula 2.4:

FIGURE 2.5
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 x
x

n

i
= ∑  (2.4)

where ∑xi is the sum of the values in the sample and n is the number of values in 
the sample.

The kurtosis K and standard error of the kurtosis, SEK, are found using Formula 
2.5 and Formula 2.6:
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The skewness Sk and standard error of the skewness, SESk, are found using Formula 
2.7 and Formula 2.8:
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Normality can be evaluated using the z-score for the kurtosis, zK, and the z-score for 
the skewness, zSk. Use Formula 2.9 and Formula 2.10 to find those z-scores:

 z
K

SE
K

K

=
−0

 (2.9)

 z
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k
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k

k

=
−0

 (2.10)

Compare these z-scores with the values of the normal distribution (see Table B.1 in 
Appendix B) for a desired level of confidence α. For example, if you set α = 0.05, 
then the calculated z-scores for an approximately normal distribution must fall 
between −1.96 and +1.96.

2.4.1 Sample Problem for Examining Kurtosis

The scores in Table 2.1 represent students’ quiz performance during the first week 
of class. Use α = 0.05 for your desired level of confidence. Determine if the samples 
of week 1 quiz scores are approximately normal in terms of its kurtosis.
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First, find the mean of the sample:

 x
x

n
x

i
= =

=

∑ 1706

21
80 24.

Next, find the standard deviation. It is helpful to set up Table 2.2 to manage the 
summation when computing the standard deviation (see Formula 2.2):

 s
x x

n
s

i
=

−

−
=

−
=

=

∑( ) .
.

.

2

1

5525 81

21 1
276 29

16 62

Use the values for the mean and standard deviation to find the kurtosis. Again, it is 
helpful to set up Table 2.3 to manage the summation when computing the kurtosis 
(see Formula 2.5).

TABLE 2.1

Week 1 quiz scores

90 72 90

64 95 89

74 88 100

77 57 35

100 64 95

65 80 84

90 100 76

TABLE 2.2

xi x xi − ( )x xi − 2

90 9.76 95.29

72 −8.24 67.87

90 9.76 95.29

64 −16.24 263.68

95 14.76 217.91

89 8.76 76.77

74 −6.24 38.91

88 7.76 60.25

100 19.76 390.53

77 −3.24 10.49

57 −23.24 540.01
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xi x xi − ( )x xi − 2

35 −45.24 2046.49

100 19.76 390.53

64 −16.24 263.68

95 14.76 217.91

65 −15.24 232.20

80 −0.24 0.06

84 3.76 14.15

90 9.76 95.29

100 19.76 390.53

76 −4.24 17.96

∑ − =( ) .x xi
2 5525 81

TABLE 2.2 (Continued)

TABLE 2.3

xi

x x

s
i − x x

s
i −








4

90 0.587 0.119

72 −0.496 0.060

90 0.587 0.119

64 −0.977 0.911

95 0.888 0.622

89 0.527 0.077

74 −0.375 0.020

88 0.467 0.048

100 1.189 1.998

77 −0.195 0.001

57 −1.398 3.820

35 −2.722 54.864

100 1.189 1.998

64 −0.977 0.911

95 0.888 0.622

65 −0.917 0.706

80 −0.014 0.000

84 0.226 0.003

90 0.587 0.119

100 1.189 1.998

76 −0.255 0.004

∑
−






 =

x x

s
i

4

69 020.



22  CHAPTER 2  TEsTing DATA foR noRmAliTy

Compute the kurtosis:
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Next, find the standard error of the kurtosis:
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Finally, use the kurtosis and the standard error of the kurtosis to find a z-score:
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.

.

Use the z-score to examine the sample’s approximation to a normal distribution. This 
value must fall between −1.96 and +1.96 to pass the normality assumption for 
α = 0.05. Since this z-score value does fall within that range, the sample has passed 
our normality assumption for kurtosis. Next, the sample’s skewness must be checked 
for normality.

2.4.2 Sample Problem for Examining Skewness

Based on the same values from the example listed earlier, determine if the samples 
of week 1 quiz scores are approximately normal in terms of its skewness.

Use the mean and standard deviation from the previous example to find the 
skewness. Set up Table 2.4 to manage the summation in the skewness formula.

Compute the skewness:
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TABLE 2.4

xi

x x

s
i − x x

s
i −








3

90 0.587 0.203

72 −0.496 −0.122

90 0.587 0.203

64 −0.977 −0.932

95 0.888 0.700

89 0.527 0.146

74 −0.375 −0.053

88 0.467 0.102

100 1.189 1.680

77 −0.195 −0.007

57 −1.398 −2.732

35 −2.722 −20.159

100 1.189 1.680

64 −0.977 −0.932

95 0.888 0.700

65 −0.917 −0.770

80 −0.014 0.000

84 0.226 0.012

90 0.587 0.203

100 1.189 1.680

76 −0.255 −0.017

∑
−






 = −

x x

s
i

3

18 415.
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Next, find the standard error of the skewness:
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Finally, use the skewness and the standard error of the skewness to find a z-score:
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Use the z-score to examine the sample’s approximation to a normal distribution. This 
value must fall between −1.96 and +1.96 to pass the normality assumption for 
α = 0.05. Since this z-score value does not fall within that range, the sample has 
failed our normality assumption for skewness. Therefore, either the sample must be 
modified and rechecked or you must use a nonparametric statistical test.

2.4.3 Examining Skewness and Kurtosis for Normality  
Using SPSS

We will analyze the examples earlier using SPSS.

2.4.3.1  Define  Your  Variables  First, click the “Variable View” tab at the 
bottom of your screen. Then, type the name of your variable(s) in the “Name” 
column. As shown in Figure 2.7, we have named our variable “Wk1_Qz.”

FIGURE 2.7

2.4.3.2  Type in Your Values  Click the “Data View” tab at the bottom of your 
screen and type your data under the variable names. As shown in Figure 2.8, we 
have typed the values for the “Wk1_Qz” sample.

2.4.3.3  Analyze Your Data  As shown in Figure 2.9, use the pull-down menus 
to choose “Analyze,” “Descriptive Statistics,” and “Descriptives . . .”

Choose the variable(s) that you want to examine. Then, click the button in the 
middle to move the variable to the “Variable(s)” box, as shown in Figure 2.10. Next, 
click the “Options . . .” button to open the “Descriptives: Options” window shown 
in Figure 2.11. In the “Distribution” section, check the boxes next to “Kurtosis” and 
“Skewness.” Then, click “Continue.”

Finally, once you have returned to the “Descriptives” window, as shown in 
Figure 2.12, click “OK” to perform the analysis.



FIGURE 2.8

FIGURE 2.9

FIGURE 2.10
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FIGURE 2.11

FIGURE 2.12
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2.4.3.4  Interpret the Results from the SPSS Output Window  The SPSS 
Output 2.1 provides the kurtosis and the skewness, along with their associated 
standard errors. In our example, the skewness is −1.018 and its standard error is 
0.501. The kurtosis is 1.153 and its standard error is 0.972.

SPSS OUTPUT 2.1

At this stage, we need to manually compute the z-scores for the skewness and 
kurtosis as we did in the previous examples. First, compute the z-score for kurtosis:
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Next, we compute the z-score for skewness:

 
z

S

SE

z

S
k

S

S

k

k

k

=
−

=
−

= −

0 1 018

0 501

2 032

.

.

.

Both of these values must fall between −1.96 and +1.96 to pass the normality 
assumption for α = 0.05. The z-score for kurtosis falls within the desired range, but 
the z-score for skewness does not. Using α = 0.05, the sample has passed the nor-
mality assumption for kurtosis, yet failed the normality assumption for skewness. 
Therefore, either the sample must be modified and rechecked or you must use a 
nonparametric statistical test.

2.5 COMPUTING THE KOLMOGOROV–SMIRNOV 
ONE-SAMPLE TEST

The Kolmogorov–Smirnov one-sample test is a procedure to examine the agreement 
between two sets of values. For our purposes, the two sets of values compared are 
an observed frequency distribution based on a randomly collected sample and an 
empirical frequency distribution based on the sample’s population. Furthermore, the 
observed sample is examined for normality when the empirical frequency distribu-
tion is based on a normal distribution.

The Kolmogorov–Smirnov one-sample test compares two cumulative fre-
quency distributions. A cumulative frequency distribution is useful for finding the 
number of observations above or below a particular value in a data sample. It is 
calculated by taking a given frequency and adding all the preceding frequencies  
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in the list. In other words, it is like making a running total of the frequencies in a 
distribution. Creating cumulative frequency distributions of the observed and empiri-
cal frequency distributions allow us to find the point at which these two distributions 
show the largest divergence. Then, the test uses the largest divergence to identify a 
two-tailed probability estimate p to determine if the samples are statistically similar 
or different.

To perform the Kolmogorov–Smirnov one-sample test, we begin by determin-
ing the relative empirical frequency distribution f̂xi  based on the observed sample. 
This relative empirical frequency distribution will approximate a normal distribution 
since we are examining our observed values for sample normality. First, calculate 
the observed frequency distribution’s midpoint M and standard deviation s. The 
midpoint and standard deviation are found using Formula 2.11 and Formula 2.12:

 M x x= + ÷( )max min 2  (2.11)

where xmax is the largest value in the sample and xmin is the smallest value in the 
sample, and

 s
f x

f x

n
n

i i

i i

=
−

( )

−

∑ ∑
( )2

2

1
 (2.12)

where xi is a given value in the observed sample, fi is the frequency of a given value 
in the observed sample, and n is the number of values in the observed sample.

Next, use the midpoint and standard deviation to calculate the z-scores (see 
Formula 2.13) for the sample values xi,

 z
x M

s
i=
−

 (2.13)

Use those z-scores and Table B.1 in Appendix B to determine the probability associ-
ated with each sample value, p̂xi. These p-values are the relative frequencies of the 
empirical frequency distribution f̂r .

Now, we find the relative values of the observed frequency distribution fr. Use 
Formula 2.14:

 f
f

n
r

i=  (2.14)

where fi is the frequency of a given value in the observed sample and n is the number 
of values in the observed sample.

Since the Kolmogorov–Smirnov test uses cumulative frequency distributions, 
both the relative empirical frequency distribution and relative observed frequency 
distribution must be converted into cumulative frequency distributions F̂xi and Sxi, 
respectively. Use Formula 2.15 and Formula 2.16 to find the absolute value diver-
gence �D and D between the cumulative frequency distributions:

 �D F Sx xi i= −ˆ  (2.15)

 D F Sx xi i= − −
ˆ

1  (2.16)
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Use the largest divergence with Formula 2.17 to calculate the Kolmogorov–Smirnov 
test statistic Z:

 Z n D D= ( )max , �  (2.17)

Then, use the Kolmogorov–Smirnov test statistic Z and the Smirnov (1948) formula 
(see Formula 2.18, Formula 2.19, Formula 2.20, Formula 2.21, Formula 2.22, and 
Formula 2.23) to find the two-tailed probability estimate p:

 if then0 0 27 1≤ < =Z p. ,  (2.18)

 if then0 27 1 1
2 506628 9 25. ,
.

( )≤ < = − + +Z p
Z

Q Q Q  (2.19)

where

 Q e Z= − −1 233701 2.  (2.20)

 if then1 3 1 2 4 9 16≤ < = − + −Z p Q Q Q Q. , ( )  (2.21)

where

 Q e Z= −2 2  (2.22)

 if thenZ p≥ =3 1 0. ,  (2.23)

A p-value that exceeds the level of risk associated with the null hypothesis indicates 
that the observed sample approximates the empirical sample. Since our empirical 
distributions approximated a normal distribution, we can state that our observed 
sample is sufficiently normal for parametric statistics. Conversely, a p-value that is 
smaller than the level of risk indicates an observed sample that is not sufficiently 
normal for parametric statistics. The nonparametric statistical tests in this book are 
useful if a sample lacks normality.

2.5.1 Sample Kolmogorov–Smirnov One-Sample Test

A department store has decided to evaluate customer satisfaction. As part of a pilot 
study, the store provides customers with a survey to rate employee friendliness. The 
survey uses a scale of 1–10 and its developer indicates that the scores should conform 
to a normal distribution. Use the Kolmogorov–Smirnov one-sample test to decide if 
the sample of customers surveyed responded with scores approximately matching a 
normal distribution. The survey results are shown in Table 2.5.

TABLE 2.5

Survey results

7 3 3 6

4 4 4 5

5 5 8 9

5 5 5 7

6 8 6 2
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2.5.1.1  State the Null and Research Hypotheses  The null hypothesis states 
that the observed sample has an approximately normal distribution. The research 
hypothesis states that the observed sample does not approximately resemble a normal 
distribution.

The null hypothesis is

HO: There is no difference between the observed distribution of survey scores 
and a normally distributed empirical sample.

The research hypothesis is

HA: There is a difference between the observed distribution of survey scores 
and a normally distributed empirical sample.

2.5.1.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use an α = 0.05 in our example. In other words, there is a 95% 
chance that any observed statistical difference will be real and not due to chance.

2.5.1.3  Choose the Appropriate Test Statistic  We are seeking to compare 
our observed sample against a normally distributed empirical sample. The 
Kolmogorov–Smirnov one-sample test will provide this comparison.

2.5.1.4  Compute the Test Statistic  First, determine the midpoint and standard 
deviation for the observed sample. Table 2.6 helps to manage the summations for 
this process.

TABLE 2.6

Survey score Score frequency

xi fi fixi f xi i
2

 1 0 0 0

 2 1 2 4

 3 2 6 18

 4 3 12 48

 5 6 30 150

 6 3 18 108

 7 2 14 98

 8 2 16 128

 9 1 9 81

10 0 0 0

n = 20 ∑ =f xi i 107 ∑ =f xi i
2 635
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Use Formula 2.11 to find the midpoint:
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Then, use Formula 2.12 to find the standard deviation:
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Now, determine the z-scores, empirical relative frequencies, and observed relative 
frequencies for each score value (see Table 2.7).

TABLE 2.7

Survey score Score frequency Empirical frequency Observed frequency

xi fi z-score p̂xi f̂r fr

 1 0 2.49 0.0064 0.006 0.000

 2 1 1.93 0.0266 0.020 0.050

 3 2 1.38 0.0838 0.064 0.100

 4 3 0.83 0.2033 0.140 0.150
 5 6 0.28 0.3897 0.250 0.300

 6 3 0.28 0.3897 0.250 0.150

 7 2 0.83 0.2033 0.140 0.100

 8 2 1.38 0.0838 0.064 0.100

 9 1 1.93 0.0266 0.020 0.050

10 0 2.49 0.0064 0.006 0.000

We will provide a sample calculation for survey score = 4 as seen in Table 
2.7. Use Formula 2.13 to calculate the z-scores:
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Use each z-score and Table B.1 in Appendix B to determine the probability associ-
ated with the each value, p̂xi:

 ˆ .p4 0 2033=

To find the empirical frequency value f̂r  for each value, subtract its preceding 
value, f̂r−1, from the associated probability value p̂xi. In other words,

 ˆ ˆ ˆf p fr x ri= − −1

We establish our empirical frequency distribution beginning at the tail, xi = 1, and 
work to the midpoint, xi = 5:

 

ˆ ˆ ˆ . . .
ˆ ˆ ˆ . .

f p f

f p f

r r

r r
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ˆ ˆ ˆ . . .f p fr r

Our empirical frequency distribution is based on a normal distribution, which is 
symmetrical. Therefore, we can complete our empirical frequency distribution by 
basing the remaining values on a symmetrical distribution. Those values are in Table 
2.7.

Now, we find the values of the observed frequency distribution fr with Formula 
2.14. We provide a sample calculation with survey result =  4. That survey value 
occurs three times:
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Next, we create cumulative frequency distributions using the empirical and observed 
frequency distributions. A cumulative frequency distribution is created by taking a 
frequency and adding all the preceding values. We demonstrate this in Table 2.8.

Now, we find the absolute value divergence �D and D between the cumulative 
frequency distributions. Use Formula 2.15 and Formula 2.16. See the sample calcula-
tion for survey score = 4 as seen in bold in Table 2.9.
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TABLE 2.8

Survey score

Relative frequency Cumulative frequency

Empirical Observed Empirical Observed

xi f̂r fr F̂xi Sxi

 1 0.006 0.000 0.006 0.000

 2 0.020 0.050 0.020 + 0.006 = 0.026 0.050 + 0.000 = 0.050

 3 0.064 0.100 0.064 + 0.026 = 0.090 0.100 + 0.050 = 0.150

 4 0.140 0.150 0.140 + 0.090 = 0.230 0.150 + 0.150 = 0.300

 5 0.250 0.300 0.250 + 0.230 = 0.480 0.300 + 0.300 = 0.600

 6 0.250 0.150 0.250 + 0.480 = 0.730 0.150 + 0.600 = 0.750

 7 0.140 0.100 0.140 + 0.730 = 0.870 0.100 + 0.750 = 0.850

 8 0.064 0.100 0.064 + 0.870 = 0.934 0.100 + 0.850 = 0.950

 9 0.020 0.050 0.020 + 0.934 = 0.954 0.050 + 0.950 = 1.000

10 0.006 0.000 0.006 + 0.954 = 0.960 0.000 + 1.000 = 1.000

TABLE 2.9

Survey score

Cumulative frequency Cumulative frequency

Empirical Observed Divergence

xi F̂xi Sxi �D D

 1 0.006 0.000 0.006

 2 0.026 0.050 0.024 0.026

 3 0.090 0.150 0.060 0.040

 4 0.230 0.300 0.070 0.080
*5 0.480 0.600 0.120 *0.180

 6 0.730 0.750 0.020 0.130

 7 0.870 0.850 0.020 0.120

 8 0.934 0.950 0.016 0.084

 9 0.954 1.000 0.046 0.004

10 0.960 1.000 0.040 0.040

To find the test statistic Z, use the largest value from �D and D in Formula 2.17. Table 
2.9 has an asterisk next to the largest divergence. That value is located at survey 
value = 5. It is max , .D D�( ) = 0 180:
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2.5.1.5  Determine  the  p-Value  Associated  with  the  Test  Statistic  The 
Kolmogorov–Smirnov test statistic Z and the Smirnov (1948) formula (see Formula 
2.18, Formula 2.19, Formula 2.20, Formula 2.21, Formula 2.22, and Formula 2.23) 
are used to find the two-tailed probability estimate p. Since 0.27 ≤ Z < 1, we use 
Formula 2.19 and Formula 2.20:
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2.5.1.6  Compare  the  p-Value  with  the  Level  of  Risk  (or  the  Level  of 
Significance)  Associated  with  the  Null  Hypothesis  The critical value for 
rejecting the null hypothesis is α = 0.05 and the obtained p-value is p = 0.536. If 
the critical value is greater than the obtained value, we must reject the null hypothesis. 
If the critical value is less than the obtained p-value, we must not reject the null 
hypothesis. Since the critical value is less than the obtained value (0.05 < 0.536), 
we do not reject the null hypothesis.

2.5.1.7  Interpret the Results  We did not reject the null hypothesis, suggesting 
the customers’ survey ratings of employee friendliness sufficiently resembled a 
normal distribution. This means that a parametric statistical procedure may be used 
with this sample.

2.5.1.8  Reporting the Results  When reporting the results from the Kolmogorov–
Smirnov one-sample test, we include the test statistic (D), the degrees of freedom 
(which equals the sample size), and the p-value in terms of the level of risk α. Based 
on our analysis, the sample of customers is approximately normal, where 
D(20) = 0.180, p > 0.05.

2.5.2 Performing the Kolmogorov–Smirnov One-Sample 
Test Using SPSS

We will analyze the data from the example earlier using SPSS.

2.5.2.1  Define  Your  Variables  First, click the “Variable View” tab at the 
bottom of your screen. Then, type the names of your variables in the “Name” 
column. As shown in Figure 2.13, the variable is called “Survey.”
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2.5.2.2  Type in Your Values  Click the “Data View” tab at the bottom of your 
screen. Type your sample values in the “Survey” column as shown in Figure 2.14.

FIGURE 2.13

FIGURE 2.14

2.5.2.3  Analyze Your Data  As shown in Figure 2.15, use the pull-down menus 
to choose “Analyze,” “Nonparametric Tests,” “Legacy Dialogs,” and “1-Sample K- 
S . . .”

Use the arrow button to place your variable with your data values in the box 
labeled “Test Variable List:” as shown in Figure 2.16. Finally, click “OK” to perform 
the analysis.

2.5.2.4  Interpret the Results from the SPSS Output Window  SPSS Output 
2.2 provides the most extreme difference (D = 0.176), Kolmogorov–Smirnov Z-test 
statistic (Z = 0.789), and the significance (p = 0.562). Based on the results from 
SPSS, the p-value exceeds the level of risk associated with the null hypothesis 
(α  =  0.05). Therefore, we do not reject the null hypothesis. In other words, the 
sample distribution is sufficiently normal.
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FIGURE 2.15

FIGURE 2.16
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On an added note, differences between the values from the sample problem 
earlier and the SPSS output are likely due to value precision and computational 
round off errors.

2.6 SUMMARY

Parametric statistical tests, such as the t-test and one-way analysis of variance, are 
based on particular assumptions or parameters. Therefore, it is important that you 
examine collected data for its approximation to a normal distribution. Upon doing 
that, you can consider whether you will use a parametric or nonparametric test for 
analyzing your data.

In this chapter, we presented three quantitative measures of sample normality. 
First, we described how to examine a sample’s kurtosis and skewness. Then, we 
described how to perform and interpret a Kolmogorov–Smirnov one-sample test. In 
the following chapters, we will describe several nonparametric procedures for ana-
lyzing data samples that do not meet the assumptions needed for parametric statisti-
cal tests. In the chapter that follows, we will begin by describing a test for comparing 
two unrelated samples.

2.7 PRACTICE QUESTIONS

1. The values in Table 2.10 are a sample of reading-level score for a 9th-grade class. 
They are measured on a ratio scale. Examine the sample’s skewness and kurtosis 
for normality for α = 0.05. Report your findings.

2. Using a Kolmogorov–Smirnov one-sample test, examine the sample of values 
from Table 2.10. Report your findings.

SPSS OUTPUT 2.2
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2.8 SOLUTIONS TO PRACTICE QUESTIONS  

1. SPSS returned the following values:

skewness = −0.904

standard error of the skewness = 0.427

kurtosis = 0.188

standard error of the kurtosis = 0.833

The computed z-scores are as follows:

 zSk = −2 117.

and

 zK = 0 226.

At α = 0.05, the sample’s skewness fails the normality test, while the kurtosis 
passes the normality test. Based on our standard of α  =  0.05, this sample of 
reading levels for 9th-grade students is not sufficiently normal.

2. SPSS Output 2.3 shows the results from the Kolmogorov–Smirnov one-sample test.
Kolmogorov–Smirnov obtained value = 1.007
Two-Tailed significance = 0.263

SPSS OUTPUT 2.3

TABLE 2.10

Ninth-grade reading-level score

8.10 8.20 8.20 8.70 8.70 8.80 8.80 8.90 8.90 8.90

9.20 9.20 9.20 9.30 9.30 9.30 9.40 9.40 9.40 9.40

9.50 9.50 9.50 9.50 9.60 9.60 9.60 9.70 9.70 9.90

According to the Kolmogorov–Smirnov one-sample test with α  =  0.05, this 
sample of reading levels for 9th-grade students is sufficiently normal.
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CHAPTER 3
COMPARING TWO RELATED 
SAMPLES: THE WILCOXON 
SIGNED RANK AND THE  
SIGN TEST

3.1 OBJECTIVES

In this chapter, you will learn the following items:

•	 How to compute the Wilcoxon signed rank test.

•	 How to perform the Wilcoxon signed rank test using SPSS®.

•	 How to construct a median confidence interval based on the Wilcoxon 
signed rank test for matched pairs.

•	 How to compute the sign test.

•	 How to perform the sign test using SPSS.

3.2 INTRODUCTION

Imagine that you give an attitude test to a small group of people. After you deliver some 
type of treatment, say, a daily vitamin C supplement for several weeks, you give that 
same group of people another attitude test. Finally, you compare the two measures 
of attitude to see if there is any type of difference between the two sets of scores.

The two sets of test scores in the previous scenario are related or paired. This is 
because each person was tested twice. In other words, each test score in one group of 
scores has another test score counterpart. The Wilcoxon signed rank test and the sign 
test are nonparametric statistical procedures for comparing two samples that are paired 
or related. The parametric equivalent to these tests goes by names such as the Student’s 
t-test, t-test for matched pairs, t-test for paired samples, or t-test for dependent samples.

In this chapter, we will describe how to perform and interpret a Wilcoxon 
signed rank test and a sign test, using both small samples and large samples. In addition, 
we demonstrate the procedures for performing both tests using SPSS. Finally, we 
offer varied examples of these nonparametric statistics from the literature.

39
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3.3 COMPUTING THE WILCOXON SIGNED RANK 
TEST STATISTIC

The formula for computing the Wilcoxon T for small samples is shown in Formula 
3.1. The signed ranks are the values that are used to compute the positive and nega-
tive values in the formula:

 T R R= + −smaller of and Σ Σ  (3.1)

where ΣR+ is the sum of the ranks with positive differences and ΣR− is the sum of 
the ranks with negative differences.

After the T statistic is computed, it must be examined for significance. We 
may use a table of critical values (see Table B.3 in Appendix B). However, if the 
numbers of pairs n exceeds those available from the table, then a large sample 
approximation may be performed. For large samples, compute a z-score and use a 
table with the normal distribution (see Table B.1 in Appendix B) to obtain a critical 
region of z-scores. Formula 3.2, Formula 3.3, and Formula 3.4 are used to find the 
z-score of a Wilcoxon signed rank test for large samples:

 x
n n

T =
+( )1

4
 (3.2)

where xT  is the mean and n is the number of matched pairs included in the 
analysis,

 s
n n n

T =
+ +( )( )1 2 1

24
 (3.3)

where sT is the standard deviation,

 z
T x

s
T

T

* =
−

 (3.4)

where z* is the z-score for an approximation of the data to the normal distribution 
and T is the T statistic.

At this point, the analysis is limited to identifying the presence or absence of 
a significant difference between the groups and does not describe the strength of the 
treatment. We can consider the effect size (ES) to determine the degree of association 
between the groups. We use Formula 3.5 to calculate the ES:

 ES
z

n
=  (3.5)

where |z| is the absolute value of the z-score and n is the number of matched pairs 
included in the analysis.

The ES ranges from 0 to 1. Cohen (1988) defined the conventions for ES as 
small = 0.10, medium = 0.30, and large = 0.50. (Correlation coefficient and ES are 
both measures of association. See Chapter 7 concerning correlation for more infor-
mation on Cohen’s assignment of ES’s relative strength.)
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3.3.1 Sample Wilcoxon Signed Rank Test (Small Data 
Samples)

The counseling staff of Clear Creek County School District has implemented a new 
program this year to reduce bullying in their elementary schools. The school district 
does not know if the new program resulted in improvement or deterioration. In order 
to evaluate the program’s effectiveness, the school district has decided to compare 
the percentage of successful interventions last year before the program began with 
the percentage of successful interventions this year with the program in place. In 
Table 3.1, the 12 elementary school counselors, or participants, reported the percent-
age of successful interventions last year and the percentage this year.

TABLE 3.1

Participants

Percentage of successful 
interventions

Last year This year

1 31 31

2 14 14

3 53 50

4 18 30

5 21 28

6 44 48

7 12 35

8 36 32

9 22 23

10 29 34

11 17 27

12 40 42

The samples are relatively small, so we need a nonparametric procedure. Since 
we are comparing two related, or paired, samples, we will use the Wilcoxon signed 
rank test.

3.3.1.1  State the Null and Research Hypotheses  The null hypothesis states 
that the counselors reported no difference in the percentages last year and this year. 
The research hypothesis states that the counselors observed some differences between 
this year and last year. Our research hypothesis is a two-tailed, nondirectional 
hypothesis because it indicates a difference, but in no particular direction.

The null hypothesis is

HO: μD = 0

The research hypothesis is

HA: μD ≠ 0
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3.3.1.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

3.3.1.3  Choose the Appropriate Test Statistic  The data are obtained from 
12 counselors, or participants, who are using a new program designed to reduce 
bullying among students in the elementary schools. The participants reported the 
percentage of successful interventions last year and the percentage this year. We are 
comparing last year’s percentages with this year’s percentages. Therefore, the data 
samples are related or paired. In addition, sample sizes are relatively small. Since 
we are comparing two related samples, we will use the Wilcoxon signed rank test.

3.3.1.4  Compute  the  Test  Statistic  First, compute the difference between 
each sample pair. Then, rank the absolute value of those computed differences. Using 
this method, the differences of zero are ignored when ranking. We have done this in 
Table 3.2.

TABLE 3.2

Participant

Percentage of successful 
interventions

Difference

Rank

SignLast year This year Without zero

1 31 31 0 Exclude

2 14 14 0 Exclude

3 53 50 –3 3 –

4 18 30 +12 9 +
5 21 28 +7 7 +
6 44 48 +4 4.5 +
7 12 35 +23 10 +
8 36 32 –4 4.5 –

9 22 23 +1 1 +
10 29 34 +5 6 +
11 17 27 +10 8 +
12 40 42 +2 2 +

Compute the sum of ranks with positive differences. Using Table 3.2, the ranks 
with positive differences are 9, 7, 4.5, 10, 1, 6, 8, and 2. When we add all of the 
ranks with positive difference we get ΣR+ = 47.5.

Compute the sum of ranks with negative differences. The ranks with negative 
differences are 3 and 4.5. The sum of ranks with negative difference is ΣR− = 7.5.

The obtained value is the smaller of the two rank sums. Therefore, the Wil-
coxon is T = 7.5.
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3.3.1.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using  the  Appropriate  Table  of  Critical  Values  for  the  Particular 
Statistic  Since the sample sizes are small, we use Table B.3 in Appendix B, which 
lists the critical values for the Wilcoxon T. As noted earlier in Table 3.2, the two 
counselors with score differences of zero were discarded. This reduces our sample 
size to n = 10. In this case, we look for the critical value under the two-tailed test 
for n = 10 and α = 0.05. Table B.3 returns a critical value for the Wilcoxon test of 
T = 8. An obtained value that is less than or equal to 8 will lead us to reject our null 
hypothesis.

3.3.1.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 8 and the obtained value is T = 7.5. If the 
critical value equals or exceeds the obtained value, we must reject the null hypothesis. 
If instead, the critical value is less than the obtained value, we must not reject the 
null hypothesis. Since the critical value exceeds the obtained value, we must reject 
the null hypothesis.

3.3.1.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
a real difference exists between last year’s percentages and this year’s percentages. 
In addition, since the sum of the positive difference ranks (ΣR+) was larger than the 
negative difference ranks (ΣR−), the difference is positive, showing a positive impact 
of the program. Therefore, our analysis provides evidence that the new bullying 
program is providing positive benefits toward the improvement of student behavior 
as perceived by the school counselors.

3.3.1.8  Reporting  the  Results  When reporting the findings, include the T 
statistic, sample size, and p-value’s relation to α. The directionality of the difference 
should be expressed using the sum of the positive difference ranks (ΣR+) and sum 
of the negative difference ranks (ΣR−).

For this example, the Wilcoxon signed rank test (T = 7.5, n = 12, p < 0.05) 
indicated that the percentage of successful interventions was significantly different. 
In addition, the sum of the positive difference ranks (ΣR+ = 47.5) was larger than 
the sum of the negative difference ranks (ΣR− =  7.5), showing a positive impact 
from the program. Therefore, our analysis provides evidence that the new bullying 
program is providing positive benefits toward the improvement of student behavior 
as perceived by the school counselors.

3.3.2 Confidence Interval for the Wilcoxon Signed Rank Test

The American Psychological Association (2001) has suggested that researchers 
report the confidence interval for research data. A confidence interval is an inference 
to a population in terms of an estimation of sampling error. More specifically, it 
provides a range of values that fall within the population with a level of confidence 
of 100(1 − α)%.
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A median confidence interval can be constructed based on the Wilcoxon signed 
rank test for matched pairs. In order to create this confidence interval, all of the 
possible matched pairs (Xi,Xj) are used to compute the differences Di  =  Xi  −  Xj. 
Then, compute all of the averages uij of two difference scores using Formula 3.6. 
There will be a total of [n(n − 1)/2] + n averages.

 u D D i j nij i j= + ≤ ≤ ≤( )/2 1  (3.6)

We will perform a 95% confidence interval using the sample Wilcoxon signed 
rank test with a small data sample (as stated earlier). Table 3.1 provides the values 
for obtaining our confidence interval. We begin by using Formula 3.6 to compute 
all of the averages uij of two difference scores. For example,

 u D D11 1 1 2 3 3 2= + = − +−( ) ( )/ /

 u11 3= −

 u D D12 1 2 2 3 12 2= + = − +( ) ( )/ /

 u12 4 5= .

 u D D13 1 3 2 3 7 2= + = − +( ) ( )/ /

 u13 2=

Table 3.3 shows each value of uij.

TABLE 3.3

−3 12 7 4 23 −4 1 5 10 2

−3 −3 4.5 2 0.5 10 −3.5 −1 1 3.5 −0.5

12 12 9.5 8 17.5 4 6.5 8.5 11 7

7 7 5.5 15 1.5 4 6 8.5 4.5

4 4 13.5 0 2.5 4.5 7 3

23 23 9.5 12 14 16.5 12.5

−4 −4 −1.5 0.5 3 −1

1 1 3 5.5 1.5

5 5 7.5 3.5

10 10 6

2 2

Next, arrange all of the averages in order from smallest to largest. We have 
arranged all of the values for uij in Table 3.4.

The median of the ordered averages gives a point estimate of the population 
median difference. The median of this distribution is 4.5, which is the point estimate 
of the population.

Use Table B.3 in Appendix B to find the endpoints of the confidence interval. 
First, determine T from the table that corresponds with the sample size and desired 



3.3 COMPuTING THE WILCOxON SIGNED RANk TEST STATISTIC  45

confidence such that p = α/2. We seek to find a 95% confidence interval. For our 
example, n = 10 and p = 0.05/2. The table provides T = 8.

The endpoints of the confidence interval are the Kth smallest and the Kth 
largest values of uij, where K = T + 1. For our example, K = 8 + 1 = 9. The ninth 
value from the bottom is 0.5 and the ninth value from the top is 12.0. Based on these 
findings, it is estimated with 95% confident that the difference of successful inter-
ventions due to the new bullying programs lies between 0.5 and 12.0.

3.3.3 Sample Wilcoxon Signed Rank Test (Large Data 
Samples)

Hearing of Clear Creek School District’s success with their antibullying program, 
Jonestown School District has implemented the program this year to reduce bullying 
in their own elementary schools. The Jonestown School District evaluates their program’s 
effectiveness by comparing the percentage of successful interventions last year before 
the program began with the percentage of successful interventions this year with the program 
in place. In Table 3.5, the 25 elementary school counselors, or participants, reported the 
percentage of successful interventions last year and the percentage this year.

TABLE 3.4

1 –4.0 12 1.0 22 4.0 34 6.5 45 10.0

2 −3.5 13 1.5 23 4.0 35 7.0 46 11.0

3 −3.0 14 1.5 24 4.0 36 7.0 47 12.0

4 −1.5 15 2.0 25 4.5 37 7.0 48 12.0

5 −1.0 15 2.0 26 4.5 38 7.5 49 12.5

6 −1.0 16 2.5 27 4.5 39 8.0 50 13.5

7 −0.5 17 3.0 28 5.0 40 8.5 51 14.0

8 0.0 18 3.0 29 5.5 41 8.5 52 15.0

9 0.5 19 3.0 30 5.5 42 9.5 53 16.5

10 0.5 20 3.5 31 6.0 43 9.5 54 17.5

11 1.0 21 3.5 32 6.0 44 10.0 55 23.0

TABLE 3.5

Participant

Percentage of successful interventions

Last year This year

1 53 50

2 18 43

3 21 28

4 44 48

5 12 35

6 36 32

(Continued)
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We will use the same nonparametric procedure to analyze the data. However, 
use a large sample (n ≥ 20) approximation.

3.3.3.1  State the Null and Research Hypotheses  The null hypothesis states 
that the counselors reported no difference in the percentages last year and this year. 
The research hypothesis states that the counselors observed some differences between 
this year and last year. Our research hypothesis is a two-tailed, nondirectional 
hypothesis because it indicates a difference, but in no particular direction.

The null hypothesis is

HO: μD = 0

The research hypothesis is

HA: μD ≠ 0

3.3.3.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

Participant

Percentage of successful interventions

Last year This year

7 22 23

8 29 34

9 17 27

10 10 42

11 38 44

12 37 16

13 19 33

14 37 50

15 28 20

16 15 27

17 25 27

18 38 30

19 40 51

20 30 50

21 23 45

22 41 20

23 31 49

24 28 43

25 14 30

TABLE 3.5 (Continued)
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3.3.3.3  Choose the Appropriate Test Statistic  The data are obtained from 
25 counselors, or participants, who are using a new program designed to reduce 
bullying among students in the elementary schools. The participants reported the 
percentage of successful interventions last year and the percentage this year. We are 
comparing last year’s percentages with this year’s percentages. Therefore, the data 
samples are related or paired. Since we are comparing two related samples, we will 
use the Wilcoxon signed rank test.

3.3.3.4  Compute  the  Test  Statistic  First, compute the difference between 
each sample pair. Then, rank the absolute value of those computed differences. We 
have done this in Table 3.6.

TABLE 3.6

Participant

Percentage of successful 
interventions

Difference Rank SignLast year This year

1 53 50 −3 3 −
2 18 43 +25 24 +
3 21 28 +7 8 +
4 44 48 +4 4.5 +
5 12 35 +23 23 +
6 36 32 −4 4.5 −
7 22 23 +1 1 +
8 29 34 +5 6 +
9 17 27 +10 11 +

10 10 42 +32 25 +
11 38 44 +6 7 +
12 37 16 −21 20.5 −
13 19 33 +14 15 +
14 37 50 +13 14 +
15 28 20 −8 9.5 −
16 15 27 +12 13 +
17 25 27 +2 2 +
18 38 30 −8 9.5 −
19 40 51 +11 12 +
20 30 50 +20 19 +
21 23 45 +22 22 +
22 41 20 −21 20.5 −
23 31 49 +18 18 +
24 28 43 +15 16 +
25 14 30 +16 17 +
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Compute the sum of ranks with positive differences. Using Table 3.6, when 
we add all of the ranks with positive difference, we get ΣR+ = 257.5.

Compute the sum of ranks with negative differences. The ranks with negative 
differences are 3, 4.5, 9.5, 9.5, 20.5, and 20.5. The sum of ranks with negative dif-
ference is ΣR− = 67.5.

The obtained value is the smaller of these two rank sums. Thus, the Wilcoxon 
T = 67.5.

Since our sample size is larger than 20, we will approximate it to a normal 
distribution. Therefore, we will find a z-score for our data using a normal approxima-
tion. We must find the mean xT and the standard deviation sT for the data:

 x
n n

T =
+

=
+( ) ( )1

4

25 25 1

4

 xT = 162 5.

and

 s
n n n

T =
+ +

=
+ +

=
( )( ) ( )( ) ,1 2 1

24

25 25 1 50 1

24

33 150

24

 sT = 37 17.

Next, we use the mean, standard deviation, and the T-test statistic to calculate a 
z-score. Remember, we are testing the hypothesis that there is no difference in ranks 
of percentages of successful interventions between last year and this year:

 z
T x

s
T

T

*
. .

.
=

−
=

−67 5 162 5

37 17

 z* .= −2 56

3.3.3.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using  the  Appropriate  Table  of  Critical  Values  for  the  Particular 
Statistic  Table B.1 in Appendix B is used to establish the critical region of 
z-scores. For a two-tailed test with α = 0.05, we must not reject the null hypothesis 
if −1.96 ≤ z* ≤ 1.96.

3.3.3.6  Compare the Obtained Value to the Critical Value  We find that z* 
is not within the critical region of the distribution, −2.56 < −1.96. Therefore, we 
reject the null hypothesis. This suggests a difference in the percentage of successful 
interventions after the program was implemented.

3.3.3.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
a real difference exists between last year’s percentages and this year’s percentages. 
In addition, since the sum of the positive difference ranks (ΣR+) was larger than the 
negative difference ranks (ΣR−), the difference is positive, showing a positive impact 
of the program. Therefore, our analysis provides evidence that the new bullying 
program is providing positive benefits toward the improvement of student behavior 
as perceived by the school counselors.
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At this point, the analysis is limited to identifying the presence or absence of 
a significant difference between the groups. In other words, the statistical test’s level 
of significance does not describe the strength of the treatment. The American Psy-
chological Association (2001), however, has called for a measure of the strength 
called the ES.

We can consider the ES for this large sample test to determine the degree of 
association between the groups. We use Formula 3.5 to calculate the ES. For the 
example, |z| = 2.56 and n = 25:

 ES
z

n
= =

−2 56

25

.

 ES = 0 51.

Our ES for the matched-pair samples is 0.51. This value indicates a high level of 
association between the percentage of successful interventions before and after the 
implementation of the new bullying program.

3.3.3.8  Reporting the Results  For this example, the Wilcoxon signed rank test 
(T = 67.5, n = 25, p < 0.05) indicated that the percentage of successful interventions 
was significantly different. In addition, the sum of the positive difference ranks 
(ΣR+ = 257.5) was larger than the sum of the negative difference ranks (ΣR− = 67.5), 
showing a positive impact from the program. Moreover, the ES for the matched-pair 
samples was 0.51. Therefore, our analysis provides evidence that the new bullying 
program is providing positive benefits toward the improvement of student behavior 
as perceived by the school counselors.

3.4 COMPUTING THE SIGN TEST

You can analyze related samples more efficiently by reducing values to dichotomous 
results (“yes” or “no”) or (“+” or “−”). The sign test allows you to perform that 
analysis. Our procedure for performing the sign test is based on the method described 
by Gibbons and Chakraborti (2010).

We begin the procedure for performing a sign test by identifying whether each 
set from the related data samples demonstrates a positive difference, a negative dif-
ference, or no difference at all. Then, we find the sum of the positive differences np 
and the sum of negative differences nn. Cases with no difference are ignored.

We perform the next part of the analysis based on the sum of differences. If 
np + nn = 0, then the one-sided probability is p = 0.5. If 0 < np + nn < 25, then p 
is calculated recursively from the binomial probability function using Formula 3.7. 
Table B.9 in Appendix B includes several factorials to simplify computation:

 P X
n

n X X
p pX n X( )

!

( )! !
( )=

−
⋅ ⋅ − −1  (3.7)

where n = np + nn and p is the probability of event occurrence.
If np + nn ≥ 25, we use Formula 3.8:
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 z
n n n n

n n
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p n p n
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=
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+
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.

0 5 0 5

0 5
 (3.8)

Formula 3.8 approximates a binomial distribution to the normal distribution. 
However, the binomial distribution is a discrete distribution, while the normal dis-
tribution is continuous. More to the point, discrete values deal with heights but not 
widths, while the continuous distribution deals with both heights and widths. The 
correction adds or subtracts 0.5 of a unit from each discrete X-value to fill the gaps 
and make it continuous.

The one sided p-value is p1  =  1  −  Φ|zc|, where Φ|zc| is the area under the 
respective tail of the normal distribution at zc. The two-sided p-value is p = 2p1.

3.4.1 Sample Sign Test (Small Data Samples)

To present the process for performing the sign test, we are going to use the data 
from Section 3.3.1, which used the Wilcoxon signed rank test. Recall that the sample 
involves 12 members of the counseling staff from Clear Creek County School Dis-
trict who are working on a program to improve response to bullying in the schools. 
The data from Table 3.1 are being reduced to a binomial distribution for use with 
the sign test. The relatively small sample size warrants a nonparametric procedure.

3.4.1.1  State the Null and Research Hypotheses  The null hypothesis states 
that the counselors reported no difference between positive or negative interventions 
between last year and this year. In other words, the changes in responses produce a 
balanced number of positive and negative differences. The research hypothesis states 
that the counselors observed some differences between this year and last year. Our 
research hypothesis is a two-tailed, nondirectional hypothesis because it indicates a 
difference, but in no particular direction.

The null hypothesis is

HO: p = 0.5

The research hypothesis is

HA: p ≠ 0.5

3.4.1.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

3.4.1.3  Choose the Appropriate Test Statistic  Recall from Section 3.3.1 that 
the data are obtained from 12 counselors, or participants, who are using a new 
program designed to reduce bullying among students in the elementary schools. The 
participants reported the percentage of successful interventions last year and the 
percentage this year. We are comparing last year’s percentages with this year’s 
percentages. Therefore, the data samples are related or paired. In addition, sample 
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sizes are relatively small. Since we are comparing two related samples, we will use 
the sign test.

3.4.1.4  Compute  the  Test  Statistic  First, decide if there is a difference in 
intervention score from year 1 to year 2. Determine if the difference is positive or 
negative and put the sign of the difference in the sign column. If we count the number 
of ties or “0” differences among the group, we find only two with no difference from 
last year to this year. Ties are discarded.

Now, we count the number of positive and negative differences between last 
year and this year. Count the number of “+” or positive differences. When we look 
at Table 3.7, we see that eight participants showed positive differences, np = 8. Count 
the number of “−” or negative differences. When we look at Table 3.7, we see only 
two negative differences, nn = 2.

TABLE 3.7

Participant

Percentage of successful 
intervention

Sign of differenceLast year This year

1 31 31 0

2 14 14 0

3 53 50 –

4 18 30 +
5 21 28 +
6 44 48 +
7 12 35 +
8 36 32 –

9 22 23 +
10 29 34 +
11 17 27 +
12 40 42 +

Next, we find the X-score at and beyond where the area under our binomial 
probability function is α = 0.05. Since we are performing a two-tailed test, we use 
0.025 for each tail. We will calculate the probabilities associated with the binomial 
distribution for p = 0.5 and n = 10. We will demonstrate one of the calculations, 
but list the results for each value. To simplify calculation, use the table of factorials 
in Appendix B, Table B.9:

 P X
n

n X X
p pX n X( )

!

( )! !
( )=

−
⋅ ⋅ − −1

 P( )
!

( )! !
. ( . )0

10

10 0 0
0 5 1 0 50 10 0=

−
⋅ ⋅ − −
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 P( )
, ,

( , , )( )
.0

3 628 800

3 628 800 0
1 0 000977= ⋅ ⋅

 P( ) .0 0 0010=

 P( ) .1 0 0098=

 P( ) .2 0 0439=

 P( ) .3 0 1172=

 P( ) .4 0 2051=

 P( ) .5 0 2461=

 P( ) .6 0 2051=

 P( ) .7 = 0 1172

 P( ) .8 0 0439=

 P( ) .9 0 0098=

 P( ) .10 0 0010=

Notice that the values form a symmetric distribution with the median at P(5), as 
shown in Figure 3.1. Using this distribution, we find the p-values for each tail. To 
do that, we sum the probabilities for each tail until we find a probability equal to or 
greater than α/2 = 0.025. First, calculate P for pluses:

 P( , , ) . . . .8 9 10 0 0439 0 0098 0 0010 0 0547or = + + =

Second, calculate P for minuses:

 P( , , ) . . . .0 1 2 0 0010 0 0098 0 0439 0 0547or = + + =

P(0)
0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10)

FIGURE 3.1
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Finally, calculate the obtained value p by combining the two tails:

 p P P= + = +( , , ) ( , , ) . .8 9 10 0 1 2 0 0547 0 0547or or

 p = 0 1094.

3.4.1.5  Determine  the  Critical Value  Needed  for  Rejection  of  the  Null 
Hypothesis  In the example in this chapter, the two-tailed probability was 
computed and is compared with the level of risk specified earlier, α = 0.05.

3.4.1.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is α  =  0.05 and the obtained p-value is 
p = 0.1094. If the critical value is greater than the obtained value, we must reject 
the null hypothesis. If the critical value is less than the obtained value, we do not 
reject the null hypothesis. Since the critical value is less than the obtained value 
(p > α), we do not reject the null hypothesis.

3.4.1.7  Interpret the Results  We did not reject the null hypothesis, suggesting 
that no real difference exists between last year’s and this year’s percentages. There 
was no evidence of positive or negative intervention by counselors. These results 
differ from the data’s analysis using the Wilcoxon signed rank test. A discussion 
about statistical power addresses those differences toward the end of this chapter.

3.4.1.8  Reporting the Results  When reporting the findings for the sign test, 
you should include the sample size, the number of pluses, minuses, and ties, and the 
probability of getting the obtained number of pluses and minuses.

For this example, the obtained value, p = 0.1094, was greater than the critical 
value, α = 0.05. Therefore, we did not reject the null hypothesis, suggesting that 
the new bullying program is not providing evidence of a change in student behavior 
as perceived by the school counselors.

3.4.2 Sample Sign Test (Large Data Samples)

We are going to demonstrate a sign test with large samples using the data from the 
Wilcoxon signed rank test for large samples in Section 3.3.3. The data from the 
implementation of the bullying program in the Jonestown School District are pre-
sented in Table 3.8. The data are used to determine the effect of the bullying program 
from year 1 to year 2. If there is an increase in successful intervention, we will use 
a “+” to identify the positive difference in response. If there is a decrease in suc-
cessful intervention in the response, we will identify a negative difference with a 
“−.” There are 25 participants in this study.

3.4.2.1  State the Null and Alternate Hypotheses  The null hypothesis states 
that there was no positive or negative effect of the bullying program on successful 
intervention. The research hypothesis states that either a positive or negative effect 
exists from the bullying program.
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The null hypothesis is

HO: p = 0.5

The research hypothesis is

HA: p ≠ 0.5

3.4.2.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

3.4.2.3  Choose the Appropriate Test Statistic  Recall from Section 3.3.3 that 
the data were obtained from 25 counselors, or participants, who were using a new 
program designed to reduce bullying among students in the elementary schools. The 

TABLE 3.8

Participant

Percentage of successful interventions

Last year This year

1 53 50

2 18 43

3 21 28

4 44 48

5 12 35

6 36 32

7 22 23

8 29 34

9 17 27

10 10 42

11 38 44

12 37 16

13 19 33

14 37 50

15 28 20

16 15 27

17 25 27

18 38 30

19 40 51

20 30 50

21 23 45

22 41 20

23 31 49

24 28 43

25 14 30
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participants reported the percentage of successful interventions last year and the 
percentage this year. We are comparing last year’s percentages with this year’s 
percentages. Therefore, the data samples are related or paired. Since we are making 
dichotomous comparisons of two related samples, we will use the sign test.

3.4.2.4  Compute  the  Test  Statistic  First, we determine the sign of the 
differences between last year and this year. Table 3.9 includes the column for the 
sign of the difference for each participant. Next, we count the numbers of positive 
and negative differences. We find six negative differences, nn = 6, and 19 positive 
differences, np = 19.

Since the sample size is n ≥ 25, we will use a z-score approximation of the 
binomial distribution. The binomial distribution becomes an approximation of the 

TABLE 3.9

Participant

Percentage of successful interventions

Last year This year Sign of difference

1 53 50 −
2 18 43 +
3 21 28 +
4 44 48 +
5 12 35 +
6 36 32 −
7 22 23 +
8 29 34 +
9 17 27 +

10 10 42 +
11 38 44 +
12 37 16 −
13 19 33 +
14 37 50 +
15 28 20 −
16 15 27 +
17 25 27 +
18 38 30 −
19 40 51 +
20 30 50 +
21 23 45 +
22 41 20 −
23 31 49 +
24 28 43 +
25 14 30 +
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normal distribution as n becomes large and p is not too close to the 0 or 1 values. 
If this approximation is used, P(Y ≤ k) is obtained by computing the corrected z-
score for the given data that are as extreme or more extreme than the data given:

 

z
n n n n

n n
c

p n p n

p n

=
− + −

+
=

− + −max( , ) . ( ) .

.

( . )( ) .

( .

0 5 0 5

0 5

19 0 5 19 6 0 5

0 55 19 6

19 12 5 0 5

0 5 5

6

2 5

)( )

. .

( . )( ) .

+

=
− −

=

 zc = 2 4.

Next, we find the one-sided p-value. Table B.1 is used to establish Φ|zc|.

 p zc1 1 1 0 9918= − = −Φ .

 p1 0 0082= .

We now multiply two times the one-sided p-value to find the two-sided p-value:

 p p= =2 2 0 00821 ( )( . )

 p = 0 016.

3.4.2.5  Determine  the  Critical Value  Needed  for  Rejection  of  the  Null 
Hypothesis  In the example in this chapter, the two-tailed probability was 
computed and compared with the level of risk specified earlier, α = 0.05.

3.4.2.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is α  =  0.05 and the obtained p-value is 
p = 0.016. If the critical value is greater than the obtained value, we must reject the 
null hypothesis. If the critical value is less than the obtained value, we do not reject 
the null hypothesis. Since the critical value is greater than the obtained value 
(p < α), we reject the null hypothesis.

3.4.2.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
there is a real difference between last year’s and this year’s degree of successful 
intervention for the 25 counselors who were in the study.

Analysis was limited to the identification of the presence of positive “+” or 
negative “−” differences between year 1 and year 2 for each participant. The level 
of significance does not describe the strength of the test’s level of significance.

3.4.2.8  Reporting the Results  When reporting the findings for the sign test, 
you should include the sample size, the number of pluses, minuses, and ties, and the 
probability of getting the obtained number of pluses and minuses.

For this example, the obtained significance, p = 0.016, was less than the criti-
cal value, α = 0.05. Therefore, we rejected the null hypothesis, suggesting that the 
number of successful interventions was significantly different from year 1 to year 2.
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3.5.2 Type in Your Values

Click the “Data View” tab at the bottom of your screen and type your data under 
the variable names. As shown in Figure 3.3, we are comparing “last_yr” with 
“this_yr.”

FIGURE 3.2

FIGURE 3.3

3.5 PERFORMING THE WILCOXON SIGNED RANK 
TEST AND THE SIGN TEST USING SPSS

We will analyze the small sample examples for the Wilcoxon signed rank test and 
the sign test using SPSS.

3.5.1 Define Your Variables

First, click the “Variable View” tab at the bottom of your screen. Then, type the 
names of your variables in the “Name” column. As shown in Figure 3.2, we have 
named our variables “last_yr” and “this_yr.”
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3.5.3 Analyze Your Data

As shown in Figure 3.4, use the pull-down menus to choose “Analyze,” “Nonpara-
metric Tests,” “Legacy Dialogs,” and “2 Related Samples . . .”

FIGURE 3.4

In the upper left box, select both variables that you want to compare. Then, 
use the arrow button to place your variable pair in the box labeled “Test Pairs:”. 
Next, check the “Test Type” you wish to perform. In Figure 3.5, we have checked 
“Wilcoxon” and “Sign” to perform both tests. Finally, click “OK” to perform the 
analysis.

3.5.4 Interpret the Results from the SPSS Output Window

SPSS Output 3.1 begins by reporting the results from the Wilcoxon signed rank test. 
The first output table (called “Ranks”) provides the Wilcoxon T or obtained value. 
From the “Sum of Ranks” column, we select the smaller of the two values. In our 
example, T = 7.5. The second output table (called “Test Statistics”) returns the criti-
cal z-score for large samples. In addition, SPSS calculates the two-tailed significance 
(p = 0.041).

Based on the results from SPSS, the number of successful interventions was 
significantly different (T = 7.5, n = 12, p < 0.05). In addition, the sum of the posi-
tive difference ranks (ΣR+ = 47.5) was larger than the sum of the negative difference 
ranks (ΣR− = 7.5), demonstrating a positive impact from the program.
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FIGURE 3.5

SPSS OUTPUT 3.1

Next, SPSS Output 3.2 reports the results from the sign test. The first output table 
(called “Frequencies”) provides the negative differences, positive differences, ties, 
and total comparisons. The second output table (called “Test Statistics”) returns the 
two-tailed significance (p = 0.109). Based on the results of the sign test using SPSS, 
the number of successful interventions was not significantly different (0.109 > 0.05).



60  CHAPTER 3  COMPARING TWO RELATED SAMPLES

SPSS OUTPUT 3.2

The notion that the Wilcoxon signed rank test produced significant results 
while the sign test did not is addressed next in a brief discussion about statistical 
power.

3.6 STATISTICAL POWER

Comparing our conflicting results from the small sample Wilcoxon signed rank test 
with the sign test presents an opportunity to discuss statistical power. That difference 
is especially visible when comparing the results from the sample problems in Sec-
tions 3.3.1 and 3.4.1 of this chapter. Both sections analyzed the same data; however, 
one section demonstrated a Wilcoxon signed rank test and the other demonstrated 
the sign test.

Notice that the result from the Wilcoxon signed rank test was significant, yet 
the result from the sign test was not significant. In other words, one test produced 
significant results and the other test did not. The reason involves differences in sta-
tistical power.

Nonparametric methods generally have less statistical power compared with 
their parametric equivalents, especially when used in small samples. For instance, a 
test with less statistical power has a smaller chance of detecting a true effect where 
one might actually exist. This difference in statistical power is especially true for 
the sign test (Siegel and Castellan, 1988).

A statistical test’s power depends on several factors: the size of the effect 
(discussed later), level of desired significance (α), and sample size. Researchers use 
this information to perform a statistical power analysis before performing the experi-
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ment. This allows the researcher to determine the needed sample size. A quick search 
returns a variety of online power analysis tools. Currently, G*Power is a free tool. 
In addition, Cohen (1988) has provided several tables for finding sample sizes based 
on level of power.

3.7 EXAMPLES FROM THE LITERATURE

To be shown are varied examples of the nonparametric procedures described in this 
chapter. We have summarized each study’s research problem and the researchers’ 
rationale(s) for choosing a nonparametric approach. We encourage you to obtain 
these studies if you are interested in their results.

Boser and Poppen (1978) sought to determine which verbal responses by 
teacher held the greatest potential for improving student–teacher relationships. The 
seven verbal responses were feelings, thoughts, motives, behaviors, encounter/
encouragement, confrontation, and sharing. They used a Wilcoxon signed rank test 
to examine 101 9th-grader responses because the student participants rank ordered 
their responses.

Vaughn et al. (1999) investigated kindergarten teachers’ perceptions of prac-
tices identified to improve outcomes for children with disabilities transitioning from 
prekindergarten to kindergarten. The researchers compared the paired ratings of 
teachers’ desirability to employ the identified practices with feasibility using a Wil-
coxon signed rank test. This nonparametric procedure was considered the most 
appropriate because the study’s measure was a Likert-type scale (1 = low, 5 = high).

Rinderknecht and Smith (2004) used a 7-month nutrition intervention to 
improve the dietary self-efficacy of Native American children (5–10 years) and 
adolescents (11–18 years). Wilcoxon signed rank tests were used to determine 
whether fat and sugar intake changed significantly between pre- and postintervention 
among adolescents. The researchers chose nonparametric tests for their data that 
were not normally distributed.

Seiver and Hatfield (2002) asked environmental health professionals about 
their willingness to dine in certain restaurants based on the method and history of 
health code evaluations. A paired-sample sign test was used to determine which 
health code evaluation method and history that participants preferred. The research-
ers chose a nonparametric test since they administered questionnaires with rank 
ordered scales (0 = never, 10 = always).

3.8 SUMMARY

Two samples that are paired, or related, may be compared using a nonparametric 
procedure called the Wilcoxon signed rank test or the sign test. The parametric 
equivalent to this test is known as the Student’s t-test, t-test for matched pairs, or 
t-test for dependent samples.

In this chapter, we described how to perform and interpret a Wilcoxon signed 
rank test and a sign test, using both small samples and large samples. We also 
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explained how to perform the procedure for both tests using SPSS. Finally, we 
offered varied examples of these nonparametric statistics from the literature. The 
next chapter will involve comparing two samples that are not related.

3.9 PRACTICE QUESTIONS

1. A teacher wished to determine if providing a bilingual dictionary to students with 
limited English proficiency improves math test scores. A small class of students 
(n = 10) was selected. Students were given two math tests. Each test covered the 
same type of math content; however, students were provided a bilingual diction-
ary on the second test. The data in Table 3.10 represent the students’ performance 
on each math test.

TABLE 3.10

Student
Math test without a bilingual 

dictionary
Math test with a bilingual 

dictionary

1 30 39

2 56 46

3 48 37

4 47 44

5 43 32

6 45 39

7 36 41

8 44 40

9 44 38

10 40 46

Use a one-tailed Wilcoxon signed rank test and a one-tailed sign test to determine 
which testing condition resulted in higher scores. Use α  =  0.05. Report your 
findings.

2. A research study was done to investigate the influence of being alone at night on 
the human male heart rate. Ten men were sent into a wooded area, one at a time, 
at night, for 20  min. They had a heart monitor to record their pulse rate. The 
second night, the same men were sent into a similar wooded area accompanied 
by a companion. Their pulse rate was recorded again. The researcher wanted to 
see if having a companion would change their pulse rate. The median rates are 
reported in Table 3.11.

Use a two-tailed Wilcoxon signed rank test and a two-tailed sign test to 
determine which condition produced a higher pulse rate. Use α = 0.05. Report 
your findings.
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TABLE 3.11

Participant Median rate alone Median rate with companion

A 88 72

B 77 74

C 91 80

D 70 77

E 80 71

F 85 83

G 90 80

H 82 91

I 93 86

J 75 69

TABLE 3.12

Participant

Pounds lost

Treatment 1 Treatment 2

1 10 18

2 20 12

3 15 16

4 9 7

5 18 21

6 11 17

7 6 13

8 12 14

3. A researcher conducts a pilot study to compare two treatments to help obese 
female teenagers lose weight. She tests each individual in two different treatment 
conditions. The data in Table 3.12 provide the number of pounds that each par-
ticipant lost.

Use a two-tailed Wilcoxon signed rank test and a two-tailed sign test to determine 
which treatment resulted in greater weight loss. Use α  =  0.05. Report your 
findings.

4. Twenty participants in an exercise program were measured on the number of 
sit-ups they could do before other physical exercise (first count) and the number 
they could do after they had done at least 45  min of other physical exercise 
(second count). Table 3.13 shows the results for 20 participants obtained during 
two separate physical exercise sessions. Determine the ES for a calculated 
z-score.
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5. A school is trying to get more students to participate in activities that will make 
learning more desirable. Table 3.14 shows the number of activities that each of 
the 10 students in one class participated in last year before a new activity program 
was implemented and this year after it was implemented. Construct a 95% median 
confidence interval based on the Wilcoxon signed rank test to determine whether 
the new activity program had a significant positive effect on the student 
participation.

TABLE 3.13

Participant First count Second count

1 18 28

2 19 18

3 20 28

4 29 20

5 15 30

6 22 25

7 21 28

8 30 18

9 22 27

10 11 30

11 20 24

12 21 27

13 21 10

14 20 40

15 18 20

16 27 14

17 24 29

18 13 30

19 10 24

20 10 36

TABLE 3.14

Participants Last year This year

1 18 20

2 22 28

3 10 18

4 25 23

5 16 20

6 14 21

7 21 17

8 13 18

9 28 22

10 12 21
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3.10 SOLUTIONS TO PRACTICE QUESTIONS 

1. The results from the analysis are displayed in SPSS Outputs 3.3 and 3.4. Both 
tests report the two-tailed significance, but the question asked for the one-tailed 
significance. Therefore, divide the two-tailed significance by 2 to find the one-
tailed significance.

SPSS OUTPUT 3.3

SPSS OUTPUT 3.4
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The results from the Wilcoxon signed rank test reported a one-tailed significance 
of p = 0.201/2 = 0.101. The test results (T = 15.0, n = 10, p > 0.05) indicated 
that the two testing conditions were not significantly different.

The results from the sign test reported a one-tailed significance of 
p = 0.344/2 = 0.172. These test results (p > 0.05) also indicated that the two 
testing conditions were not significantly different.

Therefore, based on this study, the use of bilingual dictionaries on a math 
test did not significantly improve scores among limited English proficient 
students.

2. The results from the analysis are displayed in SPSS Outputs 3.5 and 3.6.

SPSS OUTPUT 3.5

The results from the Wilcoxon signed rank test reported a two-tailed significance 
of p = 0.092. The test results (T = 11.0, n = 10, p > 0.05) indicated that the 
two conditions were not significantly different.

The results from the sign test reported a two-tailed significance of p = 0.109. 
These test results (p > 0.05) also indicated that the two testing conditions were 
not significantly different.

Therefore, based on this study, the presence of a companion in the woods 
at night did not significantly influence the males’ pulse rates.

3. The results from the analysis are displayed in SPSS Outputs 3.7 and 3.8.
The results from the Wilcoxon signed rank test (T  =  10.0, n =  8, p  >  0.05) 
indicated that the two treatments were not significantly different.
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SPSS OUTPUT 3.6

SPSS OUTPUT 3.7
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SPSS OUTPUT 3.8

The results from the sign test (p > 0.05) also indicated that the two testing condi-
tions were not significantly different.

Therefore, based on this study, neither treatment program resulted in a 
significantly higher weight loss among obese female teenagers.

4. The results from the analysis are as follows:

 T = 50

 x sr r= =105 26 79and .

 z* .= −2 05

 ES = 0 46.

This is a reasonably high ES which indicates a strong measure of association.

5. For our example, n = 10 and p = 0.05/2. Thus, T = 8 and K = 9. The ninth value 
from the bottom is −1.0 and the ninth value from the top is 7.0. Based on these 
findings, it is estimated with 95% confidence that the difference in students’ 
number of activities before and after the new program lies between −1.0 and 7.0.
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CHAPTER 4
COMPARING TWO UNRELATED 
SAMPLES: THE MANN−WHITNEY 
U-TEST AND THE 
KOLMOGOROV−SMIRNOV  
TWO-SAMPLE TEST

4.1 OBJECTIVES

In this chapter, you will learn the following items:

•	 How to perform the Mann−Whitney U-test.

•	 How to construct a median confidence interval based on the difference 
between two independent samples.

•	 How to perform the Kolmogorov−Smirnov two-sample test.

•	 How to perform the Mann−Whitney U-test and the Kolmogorov−Smirnov 
two-sample test using SPSS®.

4.2 INTRODUCTION

Suppose a teacher wants to know if his first-period’s early class time has been reduc-
ing student performance. To test his idea, he compares the final exam scores of 
students in his first-period class with those in his fourth-period class. In this example, 
each score from one class period is independent, or unrelated, to the other class 
period.

The Mann−Whitney U-test and the Kolmogorov−Smirnov two-sample test 
are nonparametric statistical procedures for comparing two samples that are inde-
pendent, or not related. The parametric equivalent to these tests is the t-test for 
independent samples.

69
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In this chapter, we will describe how to perform and interpret a Mann−Whitney 
U-test and a Kolmogorov−Smirnov two-sample test. We will demonstrate both small 
samples and large samples for each test. We will also explain how to perform the 
procedure using SPSS. Finally, we offer varied examples of these nonparametric 
statistics from the literature.

4.3 COMPUTING THE MANN−WHITNEY U-TEST 
STATISTIC

The Mann−Whitney U-test is used to compare two unrelated, or independent, 
samples. The two samples are combined and rank ordered together. The strategy is 
to determine if the values from the two samples are randomly mixed in the rank 
ordering or if they are clustered at opposite ends when combined. A random rank 
ordered would mean that the two samples are not different, while a cluster of one 
sample’s values would indicate a difference between them. In Figure 4.1, two sample 
comparisons illustrate this concept.

FIGURE 4.1

Use Formula 4.1 to determine a Mann−Whitney U-test statistic for each of 
the two samples. The smaller of the two U statistics is the obtained value:

 U n n
n n

Ri
i i

i= +
+

−∑1 2
1

2

( )
 (4.1)

where Ui is the test statistic for the sample of interest, ni is the number of values 
from the sample of interest, n1 is the number of values from the first sample, n2 is 
the number of values from the second sample, and ΣRi is the sum of the ranks from 
the sample of interest.
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After the U statistic is computed, it must be examined for significance. We 
may use a table of critical values (see Table B.4 in Appendix B). However, if the 
numbers of values in each sample, ni, exceeds those available from the table, then a 
large sample approximation may be performed. For large samples, compute a z-score 
and use a table with the normal distribution (see Table B.1 in Appendix B) to obtain 
a critical region of z-scores. Formula 4.2, Formula 4.3, and Formula 4.4 are used to 
find the z-score of a Mann−Whitney U-test for large samples:

 x
n n

U = 1 2

2
 (4.2)

where xU is the mean, n1 is the number of values from the first sample, and n2 is the 
number of values from the second sample;

 s
n n n n

U =
+ +1 2 1 2 1

12

( )  (4.3)

where sU is the standard deviation;

 z
U x

s
i U

U

* =
−

 (4.4)

where z* is the z-score for a normal approximation of the data and Ui is the U statistic 
from the sample of interest.

At this point, the analysis is limited to identifying the presence or absence of 
a significant difference between the groups and does not describe the strength of the 
treatment. We can consider the effect size (ES) to determine the degree of association 
between the groups. We use Formula 4.5 to calculate the ES:

 ES
z

n
=  (4.5)

where |z| is the absolute value of the z-score and n is the total number of 
observations.

The ES ranges from 0 to 1. Cohen (1988) defined the conventions for ES as 
small = 0.10, medium = 0.30, and large = 0.50. (Correlation coefficient and ES are 
both measures of association. See Chapter 7 concerning correlation for more infor-
mation on Cohen’s assignment of ES’s relative strength.)

4.3.1 Sample Mann−Whitney U-Test (Small Data Samples)

The following data were collected from a study comparing two methods being used 
to teach reading recovery in the 4th grade. Method 1 was a pull-out program in 
which the children were taken out of the classroom for 30 min a day, 4 days a week. 
Method 2 was a small group program in which children were taught in groups of 
four or five for 45 min a day in the classroom, 4 days a week. The students were 
tested using a reading comprehension test after 4 weeks of the program. The test 
results are shown in Table 4.1.
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4.3.1.1  State the Null and Research Hypotheses  The null hypothesis states 
that there is no tendency of the ranks of one method to be systematically higher or 
lower than the other. The hypothesis is stated in terms of comparison of distributions, 
not means. The research hypothesis states that the ranks of one method are system-
atically higher or lower than the other. Our research hypothesis is a two-tailed, 
nondirectional hypothesis because it indicates a difference, but in no particular 
direction.

The null hypothesis is

HO: There is no tendency for ranks of one method to be significantly higher 
(or lower) than the other.

The research hypothesis is

HA: The ranks of one method are systematically higher (or lower) than the 
other.

4.3.1.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

4.3.1.3  Choose the Appropriate Test Statistic  The data are obtained from 
two independent, or unrelated, samples of 4th-grade children being taught reading. 
Both the small sample sizes and an existing outlier in the second sample violate our 
assumptions of normality. Since we are comparing two unrelated, or independent, 
samples, we will use the Mann−Whitney U-test.

4.3.1.4  Compute the Test Statistic  First, combine and rank both data samples 
together (see Table 4.2).

Next, compute the sum of ranks for each method. Method 1 is ΣR1 and method 
2 is ΣR2. Using Table 4.2,

 R1 7 8 9 10 11 12 13∑ = + + + + + +

 R1 70∑ =

TABLE 4.1

Method 1 Method 2

48 14

40 18

39 20

50 10

41 12

38 102

53 17
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and

 R2 1 2 3 4 5 6 14∑ = + + + + + +

 R2 35∑ =

Now, compute the U-value for each sample. For sample 1,

 U n n
n n

R1 1 2
1 1

1
1

2
7 7

7 7 1

2
70 49 28 70= +

+
− = +

+
− = + −∑( )

( )
( )

 U1 7=

and for sample 2,

 U n n
n n

R2 1 2
2 2

2
1

2
7 7

7 7 1

2
35 49 28 35= +

+
− = +

+
− = + −∑( )

( )
( )

 U2 42=

The Mann−Whitney U-test statistic is the smaller of U1 and U2. Therefore, U = 7.

4.3.1.5  Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic  Since the sample sizes are small (n < 20), we use Table B.4 in Appendix B, 
which lists the critical values for the Mann−Whitney U. The critical values are found 
on the table at the point for n1 = 7 and n2 = 7. We set α = 0.05. The critical value 
for the Mann−Whitney U is 8. A calculated value that is less than or equal to 8 will 
lead us to reject our null hypothesis.

TABLE 4.2

Ordered scores

Rank Score Sample

1 10 Method 2

2 12 Method 2

3 14 Method 2

4 17 Method 2

5 18 Method 2

6 20 Method 2

7 38 Method 1

8 39 Method 1

9 40 Method 1

10 41 Method 1

11 48 Method 1

12 50 Method 1

13 53 Method 1

14 102 Method 2
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4.3.1.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 8 and the obtained value is U = 7. If the 
critical value equals or exceeds the obtained value, we must reject the null hypoth-
esis. If instead, the critical value is less than the obtained value, we must not reject 
the null hypothesis. Since the critical value exceeds the obtained value, we must 
reject the null hypothesis.

4.3.1.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
a real difference exists between the two methods. In addition, since the sum of the 
ranks for method 1 (ΣR1) was larger than method 2 (ΣR2), we see that method 1 had 
significantly higher scores.

4.3.1.8  Reporting the Results  The reporting of results for the Mann−Whitney 
U-test should include such information as the sample sizes for each group, the U 
statistic, the p-value’s relation to α, and the sums of ranks for each group.

For this example, two methods were used to provide students with reading 
instruction. Method 1 involved a pull-out program and method 2 involved a small 
group program. Using the ranked reading comprehension test scores, the results 
indicated a significant difference between the two methods (U = 7, n1 = 7, n2 = 7, 
p < 0.05). The sum of ranks for method 1 (ΣR1 = 70) was larger than the sum of 
ranks for method 2 (ΣR2 = 35). Therefore, we can state that the data support the 
pull-out program as a more effective reading program for teaching comprehension 
to 4th-grade children at this school.

4.3.2 Confidence Interval for the Difference between Two 
Location Parameters

The American Psychological Association (2001) has suggested that researchers 
report the confidence interval for research data. A confidence interval is an inference 
to a population in terms of an estimation of sampling error. More specifically, it 
provides a range of values that fall within the population with a level of confidence 
of 100(1 − α)%.

A median confidence interval can be constructed based on the difference 
between two independent samples. It consists of possible values of differences for 
which we do not reject the null hypothesis at a defined significance level of α.

The test depends on the following assumptions:

1. Data consist of two independent random samples: X1, X2, . . . , Xn from one 
population and Y1, Y2, . . . , Yn from the second population.

2. The distribution functions of the two populations are identical except for 
possible location parameters.

To perform the analysis, set up a table that identifies all possible differences for each 
possible sample pair such that Dij = Xi − Yj for (Xi,Yj). Placing the values for X from 
smallest to largest across the top and the values for Y from smallest to largest down 
the side will eliminate the need to order the values of Dij later.
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The sample procedure to be presented later is based on the data from Table 
4.2 (small data sample Mann−Whitney U-test) near the beginning of this chapter.

The values from Table 4.2 are arranged in Table 4.3 so that the method 1 (X) 
scores are placed in order across the top and the method 2 (Y) scores are placed in 
order down the side. Then, the n1n2 differences are calculated by subtracting each Y 
value from each X value. The differences are shown in Table 4.3. Notice that the 
values of Dij are ordered in the table from highest to lowest starting at the top right 
and ending at the bottom left.

We use Table B.4 in Appendix B to find the lower limit of the confidence 
interval, L, and the upper limit U. For a two-tailed test, L is the wα/2th smallest dif-
ference and U is the wα/2th largest difference that correspond to α/2 for n1 and n2 for 
a confidence interval of (1 − α).

For our example, n1 = 7 and n2 = 7. For α/2 = 0.05/2 = 0.025, Table B.4 
returns wα/2 = 9. This means that the ninth values from the top and bottom mark the 
limits of the 95% confidence interval on both ends. Therefore, L = 19 and U = 36. 
Based on these results, we are 95% certain that the difference in population median 
is between 18 and 36.

4.3.3 Sample Mann−Whitney U-Test (Large Data Samples)

The previous comparison of teaching methods for reading recovery was repeated 
with 5th-grade students. The 5th-grade used the same two methods. Method 1 was 
a pull-out program in which the children were taken out of the classroom for 30 min 
a day, 4 days a week. Method 2 was a small group program in which children were 
taught in groups of four or five for 45 min a day in the classroom, 4 days a week. 
The students were tested using the same reading comprehension test after 4 weeks 
of the program. The test results are shown in Table 4.4.

4.3.3.1  State the Null and Research Hypotheses  The null hypothesis states 
that there is no tendency of the ranks of one method to be systematically higher  
or lower than the other. The hypothesis is stated in terms of comparison of distribu-
tions, not means. The research hypothesis states that the ranks of one method are  

TABLE 4.3

Yj

Xi

38 39 40 41 48 50 53

10 28 29 30 31 38 40 43

12 26 27 28 29 36 38 41

14 24 25 26 27 34 36 39

17 21 22 23 24 31 33 36

18 20 21 22 23 30 32 35

20 18 19 20 21 28 30 33

102 −64 −63 −62 −61 −54 −52 −49



76  CHAPTER 4  COMPARING TWO UNRELATED SAMPLES

systematically higher or lower than the other. Our research hypothesis is a two-tailed, 
nondirectional hypothesis because it indicates a difference, but in no particular 
direction.

The null hypothesis is

HO: There is no tendency for ranks of one method to be significantly higher 
(or lower) than the other.

The research hypothesis is

HA: The ranks of one method are systematically higher (or lower) than the 
other.

4.3.3.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

TABLE 4.4

Method 1 Method 2

48 14

40 18

39 20

50 10

41 12

38 102

71 21

30 19

15 100

33 23

47 16

51 82

60 13

59 25

58 24

42 97

11 28

46 9

36 34

27 52

93 70

72 22

57 26

45 8

53 17
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4.3.3.3  Choose the Appropriate Test Statistic  The data are obtained from 
two independent, or unrelated, samples of 5th-grade children being taught reading. 
Since we are comparing two unrelated, or independent, samples, we will use the 
Mann−Whitney U-test.

4.3.3.4  Compute the Test Statistic  First, combine and rank both data samples 
together (see Table 4.5). Next, compute the sum of ranks for each method. Method 
1 is ΣR1 and method 2 is ΣR2. Using Table 4.5,

TABLE 4.5

Ordered scores

Rank Score Sample

1 8 Method 2

2 9 Method 2

3 10 Method 2

4 11 Method 1

5 12 Method 2

6 13 Method 2

7 14 Method 2

8 15 Method 1

9 16 Method 2

10 17 Method 2

11 18 Method 2

12 19 Method 2

13 20 Method 2

14 21 Method 2

15 22 Method 2

16 23 Method 2

17 24 Method 2

18 25 Method 2

19 26 Method 2

20 27 Method 1

21 28 Method 2

22 30 Method 1

23 33 Method 1

24 34 Method 2

25 36 Method 1

26 38 Method 1

27 39 Method 1

28 40 Method 1

29 41 Method 1

30 42 Method 1

31 45 Method 1

(Continued)
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 R1∑ = 779

and

 R2 496∑ =

Now, compute the U-value for each sample. For sample 1,

 
U n n

n n
R1 1 2

1 1
1

1

2

25 25
25 25 1

2
779 625 325 779

= +
+

−

= +
+

− = + −

∑( )

( )
( )

 U1 171=

and for sample 2,

 
U n n

n n
R2 1 2

2 2
2

1

2

25 25
25 25 1

2
496 625 325 496

= +
+

−

= +
+

− = + −

∑( )

( )
( )

 U2 454=

Ordered scores

Rank Score Sample

32 46 Method 1

33 47 Method 1

34 48 Method 1

35 50 Method 1

36 51 Method 1

37 52 Method 2

38 53 Method 1

39 57 Method 1

40 58 Method 1

41 59 Method 1

42 60 Method 1

43 70 Method 2

44 71 Method 1

45 72 Method 1

46 82 Method 2

47 93 Method 1

48 97 Method 2

49 100 Method 2

50 102 Method 2

TABLE 4.5 (Continued)
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The Mann−Whitney U-test statistic is the smaller of U1 and U2. Therefore, U = 171.
Since our sample sizes are large, we will approximate them to a normal dis-

tribution. Therefore, we will find a z-score for our data using a normal approxima-
tion. We must find the mean xU and the standard deviation sU for the data:

 x
n n

U = =1 2

2

25 25

2

( )( )

 xU = 312 5.

and

 s
n n n n

U =
+ +

=
+ +

=1 2 1 2 1

12

25 25 25 25 1

12

31 875

12

( ) ( )( )( ) ,

 sU = 51 54.

Next, we use the mean, standard deviation, and the U-test statistic to calculate a z-score. 
Remember, we are testing the hypothesis that there is no difference in the ranks of 
the scores for two different methods of reading instruction for 5th-grade students:

 z
U x

s
i U

U

*
.

.
=

−
=

−171 312 5

51 54
 z* .= −2 75

4.3.3.5  Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic  Table B.1 in Appendix B is used to establish the critical region of z-scores. 
For a two-tailed test with α  =  0.05, we must not reject the null hypothesis if 
−1.96 ≤ z* ≤ 1.96.

4.3.3.6  Compare the Obtained Value with the Critical Value  We find that 
z* is not within the critical region of the distribution, −2.75 < −1.96. Therefore, 
we reject the null hypothesis. This suggests a difference between method 1 and 
method 2.

4.3.3.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
a real difference exists between the two methods. In addition, since the sum of the 
ranks for method 1 (ΣR1) was larger than method 2 (ΣR2), we see that method 1 had 
significantly higher scores.

At this point, the analysis is limited to identifying the presence or absence of 
a significant difference between the groups. In other words, the statistical test’s level 
of significance does not describe the strength of the treatment. The American Psy-
chological Association (2001), however, has called for a measure of the strength 
called the effect size.

We can consider the ES for this large sample test to determine the degree of 
association between the groups. We can use Formula 4.5 to calculate the ES. For the 
example, z = −2.75 and n = 50:
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 ES
z

n
= =

−2 75

50

.

 ES = 0 39.

Our ES for the sample difference is 0.39. This value indicates a medium−high level 
of association between the teaching methods for the reading recovery program with 
5th graders.

4.3.3.8  Reporting  the Results  For this example, two methods were used to 
provide 5th-grade students with reading instruction. Method 1 involved a pull-out 
program and method 2 involved a small group program. Using the ranked reading 
comprehension test scores, the results indicated a significant difference between the 
two methods (U = 171, n1 = 25, n2 = 25, p < 0.05). The sum of ranks for method 
1 (ΣR1 = 779) was larger than the sum of ranks for method 2 (ΣR2 = 496). More-
over, the ES for the sample difference was 0.39. Therefore, we can state that the 
data support the pull-out program as a more effective reading program for teaching 
comprehension to 5th-grade children at this school.

4.4 COMPUTING THE KOLMOGOROV–SMIRNOV 
TWO-SAMPLE TEST STATISTIC

In Chapter 2, we used the Kolmogorov–Smirnov one-sample test to compare a 
sample with the normal distribution. We can use the Kolmogorov–Smirnov two-
sample test to analyze two different data samples for independence. Our data must 
meet two assumptions.

1. Observations X1, . . . , Xm are a random sample from a continuous popula-
tion 1, where the X-values are mutually independent and identically dis-
tributed. Likewise, observations Y1, .  .  . , Yn are a random sample from a 
continuous population 2, where the Y-values are mutually independent and 
identically distributed.

2. The two samples are independent.

We begin by placing the data in a form that will permit us to compute the two- 
sided Kolmogorov–Smirnov test statistic Z. The first step in this procedure is to 
find the empirical distribution functions Fm(t) and Gn(t) for the samples of X and 
Y, respectively. Combine and rank order both sets of values. For every real number 
t, let

 F t
X t

m
m( ) =

≤number of observed s’

and

 G t
Y t

n
n( ) =

≤number of observed s’
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where m is the sample size of X and n the sample size of Y.
Next, use Formula 4.6 to find each absolute value divergence D between the 

empirical distributions functions:

 D F t G tm n= −( ) ( )  (4.6)

Use the largest divergence Dmax with Formula 4.7 to calculate the Kolmogorov–
Smirnov test statistic Z:

 Z D
mn

m n
=

+
max  (4.7)

Then, use the Kolmogorov–Smirnov test statistic, Z, and the Smirnov (1948) 
formula (see Formula 4.8, Formula 4.9, Formula 4.10, Formula 4.11, Formula 4.12, and 
Formula 4.13) to find the two-tailed probability estimate p. This is the same procedure 
shown in Chapter 2 when we performed the Kolmogorov–Smirnov one-sample test:

 if then0 0 27 1≤ < =Z p. ,  (4.8)

 if then0 27 1 1
2 506628 9 25. ,

.
( )≤ < = − + +Z p

Z
Q Q Q  (4.9)

where

 Q e Z= − −1 233701 2.  (4.10)

 if then 1 3 1 2 4 9 16≤ < = − + −Z p Q Q Q Q. , ( )  (4.11)

where

 Q e Z= −2 2  (4.12)

 if then Z p≥ =3 1 0. ,  (4.13)

Once we have our p-value, we can compare it against our level of risk α to determine 
if the two samples are significantly different.

4.4.1 Sample Kolmogorov–Smirnov Two-Sample Test

We will use the data from Section 4.3.1 to demonstrate the Kolmogorov–Smirnov 
two-sample test. Table 4.6 recalls the data from the study involving reading recovery 
in the 4th grade. Method 1 was a program in which children were taken out of the 

TABLE 4.6

Method 1 Method 2

48 14

40 18

39 20

50 10

41 12

38 102

53 17
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classroom for 30 min a day, Monday through Thursday each week. Method 2 was 
a small group program in which the children were taught in groups of no more than 
five for 45 min a day in the classroom. These small classes were taught Monday 
through Thursday, also. The students were tested using a reading comprehension test 
after 4 weeks of instruction.

4.4.1.1  State the Null and Alternate Hypotheses  Let X1, . . . , Xm, and Y1, 
. . . , Yn be independent random samples. The null hypothesis indicates that there is 
no difference between the reading groups X and Y. Our research hypothesis is a 
two-tailed, nondirectional hypothesis because it indicates a difference, but in no 
particular direction.

The null hypothesis is

HO: [F(t) = G(t), for every t]

The research hypothesis is

HA: [F(t) ≠ G(t) for at least one value of t]

4.4.1.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  We will use α = 0.05 in our example. In other words, there 
is a 95% chance that any observed statistical difference will be real and not due to chance.

4.4.1.3  Choose the Appropriate Test Statistic  We are seeking to compare 
two random samples, X and Y. Each sample is mutually independent and identically 
distributed. The X’s and Y’s are mutually independent. The Kolmogorov–Smirnov 
two-sample test will provide this comparison.

4.4.1.4  Compute the Test Statistic  Begin by computing the empirical distri-
bution functions for the X and Y samples:

 F t
X t

m
m( ) =

≤number of observed s’

and

 G t
Y t

n
n( ) =

≤number of observed s’

where m = 7 and n = 7.
We use the data in Table 4.6 and Formula 4.6 to find each divergence and 

generate Table 4.7.
Next, we find the largest divergence Dmax. Table 4.7 shows that Dmax = 6/7 = 0.86. 

Now, we use Formula 4.7 to calculate the Kolmogorov–Smirnov test statistic Z:

 Z D
mn

m n
=

+
= ⋅

+
= ⋅ =max ( . )

( )( )
( . ) . ( . )( . )0 86

7 7

7 7
0 86 3 5 0 86 1 87

 Z = 1 604.
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TABLE 4.7

Zi F7(Zi) G7(Zi) |F7(Zi) − G7(Zi)|

1 10 0/7 1/7 1/7

2 12 0/7 2/7 2/7

3 14 0/7 3/7 3/7

4 17 0/7 4/7 4/7

5 18 0/7 5/7 5/7

6 20 0/7 6/7 6/7

7 38 1/7 6/7 5/7

8 39 2/7 6/7 4/7

9 40 3/7 6/7 3/7

10 41 4/7 6/7 2/7

11 48 5/7 6/7 1/7

12 50 6/7 6/7 0/7

13 53 7/7 6/7 1/7

14 102 7/7 7/7 0/7

4.4.1.5  Determine  the  p-Value  Associated  with  the  Test  Statistic  Now, 
we find the p-value using Formula 4.11 since they satisfy the condition that 
1 ≤ Z < 3.1. We first need Q using Formula 4.12:

 Q e e eZ= = =− − −2 2 1 604 5 1462 2( )( . ) .

 Q = 0 0058.

Now, we can use Formula 4.11:

 
p Q Q Q Q= − + − = − + −

=
2 2 0 0058 0 0058 0 0058 0 0058

2

4 9 16 4 9 16( ) ( )( . . . . )

( )(00 0058. )

 p = 0 012.

4.4.1.6  Compare the Obtained Value with the Critical Value Needed for 
Rejection of the Null Hypothesis  The two-tailed probability, p = 0.012, was 
computed and is now compared with the level of risk specified earlier, α = 0.05. If 
α is greater than the p-value, we must reject the null hypothesis. If α is less than 
the p-value, we must not reject the null hypothesis. Since α is greater than the p-
value (0.05 > 0.012), we reject the null hypothesis.

4.4.1.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
the two methods for teaching reading recovery have significantly different effects 
on the learning of students. In studying the results, it appears that method 1 was 
more effective than method 2, in general.
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4.4.1.8  Reporting  the  Results  When reporting the results from the 
Kolmogorov–Smirnov two-sample test, include such information as the sample sizes 
for each group, the D statistic, and the p-value’s relation to α.

For this example, two methods were used to provide students with reading 
instruction. Method 1 involved a pull-out program and method 2 involved a small 
group program. Both methods include seven participants. The results from the 
Kolmogorov–Smirnov two-sample test (D = 0.857, p < 0.05) indicate a significant 
difference between the two methods. Therefore, we can state that the data support 
the pull-out program as a more effective reading program for teaching comprehen-
sion to 4th-grade children at this school.

4.5 PERFORMING THE MANN–WHITNEY U-TEST AND 
THE KOLMOGOROV–SMIRNOV TWO-SAMPLE TEST 
USING SPSS

We will analyze the data from the example in Sections 4.3.1 and 4.4.1 using SPSS.

4.5.1 Define Your Variables

First, click the “Variable View” tab at the bottom of your screen. Then, type the 
names of your variables in the “Name” column. Unlike the related samples described 
in Chapter 2, you cannot simply enter each unrelated samples into a separate column 
to execute the Mann–Whitney U-test or Kolmogorov–Smirnov two-sample test. You 
must use a grouping variable to distinguish each sample. As shown in Figure 4.2, 
the first variable is the grouping variable that we called “Method.” The second vari-
able that we called “Score” will have our actual values.

FIGURE 4.2

When establishing a grouping variable, it is often easiest to assign each group 
a whole number value. In our example, our groups are “Method 1” and “Method 2.” 
Therefore, we must set our grouping variables for the variable “Method.” First, we 
selected the “Values” column and clicked the gray square, as shown in Figure 4.3. 
Then, we set a value of 1 to equal “Method 1.” Now, as soon as we click the “Add” 
button, we will have set “Method 2” equal to 2 based on the values we inserted 
above.
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FIGURE 4.3

4.5.2 Type in Your Values

Click the “Data View” tab at the bottom of your screen as shown in Figure 4.4. Type 
in the values for both sets of data in the “Score” column. As you do so, type in the 
corresponding grouping variable in the “Method” column. For example, all of the 
values for “Method 2” are signified by a value of 2 in the grouping variable column 
that we called “Method.”

FIGURE 4.4
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4.5.3 Analyze Your Data

As shown in Figure 4.5, use the pull-down menus to choose “Analyze,” “Nonpara-
metric Tests,” “Legacy Dialogs,” and “2 Independent Samples. . . .”

Use the top arrow button to place your variable with your data values, or 
dependent variable (DV), in the box labeled “Test Variable List:.” Then, use the lower 
arrow button to place your grouping variable, or independent variable (IV), in the 
box labeled “Grouping Variable.” As shown in Figure 4.6, we have placed the 
“Score” variable in the “Test Variable List” and the “Method” variable in the “Group-
ing Variable” box. Click on the “Define Groups .  .  .” button to assign a reference 
value to your IV (i.e., “Grouping Variable”).

As shown in Figure 4.7, type 1 into the box next to “Group 1:” and 2 in the 
box next to “Group 2:.” Then, click “Continue.” This step references the value labels 
you created when you defined your grouping variable in step 1. Now that the groups 
have been assigned, click “OK” to perform the analysis.

4.5.4 Interpret the Results from the SPSS Output Window

We first compare the samples with the Mann–Whitney U-test. SPSS Output 4.1 
provides the sum of ranks and sample sizes for comparing the two groups. The 
second output table provides the Mann–Whitney U-test statistic (U =  7.0). As 
described in Figure 4.2, it also returns a similar nonparametric statistic called the 
Wilcoxon W-test statistic (W = 35.0). Notice that the Wilcoxon W is the smaller of 
the two rank sums in the table earlier.

FIGURE 4.5



FIGURE 4.6

FIGURE 4.7

SPSS returns the critical z-score for large samples. In addition, SPSS calculates 
the two-tailed significance using two methods. The asymptotic significance is more 
appropriate with large samples. However, the exact significance is more appropriate 
with small samples or data that do not resemble a normal distribution.

Based on the results from SPSS, the ranked reading comprehension test scores 
of the two methods were significantly different (U = 7, n1 = 7, n2 = 7, p < 0.05). 
The sum of ranks for method 1 (ΣR1 = 70) was larger than the sum of ranks for 
method 2 (ΣR2 = 35).

Next, we analyzed the data with the Kolmogorov–Smirnov two-sample test. 
SPSS Output 4.2 provides the most extreme differences, Dmax = 0.857. The second 
output table provides the Kolmogorov–Smirnov two-sample test statistic, Z = 1.604, 
and the two-tailed significance, p = 0.012.

The results from the Kolmogorov–Smirnov two-sample test (D  =  0.857, 
p < 0.05) indicate a significant difference between the two methods. Therefore, we 
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can state that the data support the pull-out program as a more effective reading 
program for teaching comprehension to 4th-grade children at this school.

4.6 EXAMPLES FROM THE LITERATURE

Listed are varied examples of the nonparametric procedures described in this chapter. 
We have summarized each study’s research problem and researchers’ rationale(s) 

SPSS OUTPUT 4.2

SPSS OUTPUT 4.1
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for choosing a nonparametric approach. We encourage you to obtain these studies 
if you are interested in their results.

Odaci (2007) investigated depression, submissive social behaviors, and fre-
quency of automatic negative thoughts in Turkish adolescents. Obese participants 
were compared with participants of normal weight. After the Shapiro–Wilk statistic 
revealed that the data were not normally distributed, Odaci applied a Mann–Whitney 
U-test to compare the groups.

Bryant and Trockel (1976) investigated the impact of stressful life events on 
undergraduate females’ locus of control. The authors compared accrued life chang-
ing units for participants with internal control against external using the Mann–
Whitney U-test. This nonparametric procedure was selected since the data pertaining 
to stressful life events were ordinal in nature.

Re et al. (2007) investigated the expressive writing of children with attention-
deficit/hyperactivity disorder (ADHD). The authors used a Mann–Whitney U-test 
to compare students showing symptoms of ADHD behaviors with a control group 
of students not displaying such behaviors. After examining their data with a 
Kolmogorov–Smirnov test, the researchers chose the nonparametric procedure due 
to significant deviations in the data distributions.

In an effort to understand the factors that have motivated minority students to 
enter the social worker profession, Limb and Organista (2003) studied data from 
nearly 7000 students in California entering a social worker program. The authors 
used a Wilcoxon rank sum test to compare sums of student group ranks. They chose 
this nonparametric test due to a concern that statistical assumptions were violated 
regarding sample normality and homogeneity of variances.

Schulze and Tomal (2006) examined classroom climate perceptions among 
undergraduate students. Since the student questionnaires used an interval scale, they 
analyzed their findings with a Mann–Whitney U-test.

Hegedus (1999) performed a pilot study to evaluate a scale designed to examine 
the caring behaviors of nurses. Care providers were compared with the consumers. 
She used a Wilcoxon rank sum test in her analysis because study participants were 
directed to rank the items on the scale.

The nature of expertise in astronomy was investigated across a broad spec-
trum of ages and experience (Bryce and Blown 2012). For each age and experi-
ence level, the researchers compared groups in New Zealand with respective 
groups in China using several Kolmogorov–Smirnov two-sample tests. In other 
words, each set of the two independent samples were from New Zealand versus 
China. The researchers chose a nonparametric procedure since their data were 
categorized with an ordinal scale.

4.7 SUMMARY

Two samples that are not related may be compared using a nonparametric procedure. 
Examples include the Mann–Whitney U-test (or the Wilcoxon rank sum test) and 
the Kolmogorov–Smirnov two-sample test. The parametric equivalent to these tests 
is known as the t-test for independent samples.
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In this chapter, we described how to perform and interpret the Mann–Whitney 
U-test and the Kolmogorov–Smirnov two-sample test. We demonstrated both small 
samples and large samples for each test. We also explained how to perform the 
procedures using SPSS. Finally, we offered varied examples of these nonparametric 
statistics from the literature. The next chapter will involve comparing more than two 
samples that are related.

4.8 PRACTICE QUESTIONS

1. The data in Table 4.8 were obtained from a reading-level test for 1st-grade children. 
Compare the performance gains of the two different methods for teaching reading.

TABLE 4.8

Method Gain score Method Gain score

One on one 16 Small group 11

One on one 13 Small group 2

One on one 16 Small group 10

One on one 16 Small group 4

One on one 13 Small group 9

One on one 9 Small group 8

One on one 12 Small group 5

One on one 12 Small group 6

One on one 20 Small group 4

One on one 17 Small group 16

TABLE 4.9

No hobby group Hobby group

12 9

15 5

8 10

11 3

9 4

17 2

Use two-tailed Mann–Whitney U and Kolmogorov–Smirnov two-sample tests to 
determine which method was better for teaching reading. Set α = 0.05. Report 
your findings.

2. A research study was conducted to see if an active involvement in a hobby had 
a positive effect on the health of a person who retires after age 65. The data in 
Table 4.9 describe the health (number of doctor visits in 1 year) for participants 
who are involved in a hobby almost daily and those who are not.
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Use one-tailed Mann–Whitney U and Kolmogorov–Smirnov two-sample tests to 
determine whether the hobby tends to reduce the need for doctor visits. Set 
α = 0.05. Report your findings.

3. Table 4.10 shows assessment scores of two different classes who are being taught 
computer skills using two different methods.

TABLE 4.10

Method 1 Method 2

53 91

41 18

17 14

45 21

44 23

12 99

49 16

50 10

Use two-tailed Mann–Whitney U and Kolmogorov–Smirnov two-sample tests to 
determine which method was better for teaching computer skills. Set α = 0.05. 
Report your findings.

4. Two methods of teaching reading were compared. Method 1 used the computer 
to interact with the student, and diagnose and remediate the student based on 
misconceptions. Method 2 was taught using workbooks in classroom groups. 
Table 4.11 shows the data obtained on an assessment after 6 weeks of instruction. 
Calculate the ES using the z-score from the analysis.

TABLE 4.11

Method 1 Method 2

27 9

38 42

15 21

85 83

36 110

95 19

93 29

57 40

63 30

81 23

65 18

77 32

59 101

(Continued)
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5. Two methods were used to provide instruction in science for 7th grade. Method 
1 included a laboratory each week and method 2 had only classroom work with 
lecture and worksheets. Table 4.12 shows end-of-course test performance for the 
two methods. Construct a 95% median confidence interval based on the difference 
between two independent samples to compare the two methods.

Method 1 Method 2

89 7

41 50

26 37

102 22

55 71

46 16

82 45

24 35

87 28

66 91

12 86

90 20

TABLE 4.11 (Continued)

TABLE 4.12

Method 1 Method 2

15 8

23 15

9 10

12 13

18 17

22 5

17 18

20 7

4.9 SOLUTIONS TO PRACTICE QUESTIONS

1. The results from the analysis are displayed in SPSS Outputs 4.3 and 4.4.
The results from the Mann–Whitney U-test (U = 9, n1 = 10, n2 = 10, p < 0.05) 
indicated that the two methods were significantly different. Moreover, the one-
on-one method produced a higher sum of ranks (ΣR1 = 146) than the small group 
method (ΣR2 = 64).

The results from the Kolmogorov–Smirnov two-sample test (D =  1.789, 
p < 0.05) also suggested that the two methods were significantly different.
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Therefore, based on both statistical tests, 1st-grade children displayed sig-
nificantly higher reading levels when taught with a one-on-one method.

2. The results from the analysis are displayed in SPSS Outputs 4.5 and 4.6.
The results from the Mann–Whitney U-test (U = 6, n1 = 7, n2 = 6, p < 0.05) 
indicated that the two samples were significantly different. Moreover, the sample 

SPSS OUTPUT 4.3

SPSS OUTPUT 4.4
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with no hobby produced a higher sum of ranks (ΣR1 = 64) than the sample with 
a hobby (ΣR2 = 27).

The results from the Kolmogorov–Smirnov two-sample test (D =  1.027, 
p  >  0.05) suggested, however, that the two methods were not significantly 
different.

The conflicting results from the two statistical tests prevent us from making 
a conclusive statement about this study. Study replication with larger sample sizes 
is recommended.

SPSS OUTPUT 4.6

SPSS OUTPUT 4.5
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3. The results from the analysis are displayed in SPSS Outputs 4.7 and 4.8.

SPSS OUTPUT 4.7

SPSS OUTPUT 4.8

The results from the Mann–Whitney U-test (U = 24, n1 = 8, n2 = 8, p > 0.05) 
and the results from the Kolmogorov–Smirnov two-sample test (D  =  1.000, 
p > 0.05) indicated that the two samples were not significantly different. There-
fore, based on this study, neither method resulted in significantly different assess-
ment scores for computer skills.
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4. The results from the analysis are as follows:

 U U1 2199 426= =and
 xu = 312 5.
 su = 51 54.
 z* .= −2 20
 ES = 0 31.

The ES is moderate.

5. For our example, n1 = 8 and n2 = 8. For 0.05/2 = 0.025, wα/2 = 14. Based on 
these results, we are 95% certain that the median difference between the two 
methods is between 0 and 11.
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CHAPTER 5
COMPARING MORE THAN TWO 
RELATED SAMPLES: THE 
FRIEDMAN TEST

5.1 OBJECTIVES

In this chapter, you will learn the following items:

•	 How to compute the Friedman test.

•	 How to perform contrasts to compare samples.

•	 How to perform the Friedman test and associated sample contrasts using 
SPSS®.

5.2 INTRODUCTION

Most public school divisions take pride in the percentage of their graduates admitted 
to college. A large school division might want to determine if these college admis-
sion rates are changing or stagnant. The division could compare the percentages of 
graduates admitted to college from each of its 10 high schools over the past 5 years. 
Each year would constitute a group, or sample, of percentages from each school. In 
other words, the study would include five groups, and each group would include 10 
values.

The samples in the example are dependent, or related, since each school has 
a percentage for each year. The Friedman test is a nonparametric statistical procedure 
for comparing more than two samples that are related. The parametric equivalent to 
this test is the repeated measures analysis of variance (ANOVA).

When the Friedman test leads to significant results, then at least one of the 
samples is different from the other samples. However, the Friedman test does not 
identify where the difference(s) occur. Moreover, it does not identify how many 
differences occur. In order to identify the particular differences between sample 
pairs, a researcher might use sample contrasts, or post hoc tests, to analyze the 
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specific sample pairs for significant difference(s). The Wilcoxon signed rank test 
(see Chapter 3) is a useful method for performing sample contrasts between related 
sample sets.

In this chapter, we will describe how to perform and interpret a Friedman test 
followed with sample contrasts. We will also explain how to perform the procedures 
using SPSS. Finally, we offer varied examples of these nonparametric statistics from 
the literature.

5.3 COMPUTING THE FRIEDMAN TEST STATISTIC

The Friedman test is used to compare more than two dependent samples. When 
stating our hypotheses, we state them in terms of the population. Moreover, we 
examine the population medians, θi, when performing the Friedman test.

To compute the Friedman test statistic Fr, we begin by creating a table of our 
data. List the research subjects to create the rows. Place the values for each condition 
in columns next to the appropriate subjects. Then, rank the values for each subject 
across each condition. If there are no ties from the ranks, use Formula 5.1 to deter-
mine the Friedman test statistic Fr:
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where n is the number of rows, or subjects, k is the number of columns, or condi-
tions, and Ri is the sum of the ranks from column, or condition, i.

If ranking of values results in any ties, use Formula 5.2 to determine the Fried-
man test statistic Fr:
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where n is the number of rows, or subjects, k is the number of columns, or condi-
tions, Ri is the sum of the ranks from column, or condition, i, CF is the ties correction, 
1
4

21nk k+( ) , and rij is the rank corresponding to subject j in column i.
The degrees of freedom for the Friedman test is determined by using Formula 5.3:

 df k= −1  (5.3)

Where df is the degrees of freedom and k is the number of groups.
Once the test statistic Fr is computed, it can be compared with a table of criti-

cal values (see Table B.5 in Appendix B) to examine the groups for significant dif-
ferences. However, if the number of groups, k, or the number of values in a group, 
n, exceeds those available from the table, then a large sample approximation may 
be performed. Use a table with the χ2 distribution (see Table B.2 in Appendix B) to 
obtain a critical value when performing a large sample approximation.
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If the Fr statistic is not significant, then no differences exist between any of 
the related conditions. However, if the Fr statistic is significant, then a difference 
exists between at least two of the conditions. Therefore, a researcher might use 
sample contrasts between individual pairs of conditions, or post hoc tests, to deter-
mine which of the condition pairs are significantly different.

When performing multiple sample contrasts, the type I error rate tends to 
become inflated. Therefore, the initial level of risk, or α, must be adjusted. We 
demonstrate the Bonferroni procedure, shown in Formula 5.4, to adjust α:

 α
α

B
k

=  (5.4)

where αB is the adjusted level of risk, α is the original level of risk, and k is the 
number of comparisons.

5.3.1 Sample Friedman’s Test (Small Data Samples  
without Ties)

A manager is struggling with the chronic tardiness of her seven employees. She tries 
two strategies to improve employee timeliness. First, over the course of a month, 
she punishes employees with a $10 paycheck deduction for each day that they arrive 
late. Second, the following month, she punishes employees by docking their pay $20 
for each day that they do not arrive on time.

Table 5.1 shows the number of times each employee was late in a given month. 
The baseline shows the employees’ monthly tardiness before the strategies. Month 
1 shows the employees’ monthly tardiness after a month of the $10 paycheck deduc-
tions. Month 2 shows the employees’ monthly tardiness after a month of the $20 
paycheck deductions.

TABLE 5.1

Employee

Monthly tardiness

Baseline Month 1 Month 2

1 16 13 12

2 10 5 2

3 7 8 9

4 13 11 5

5 17 2 6

6 10 7 9

7 11 6 7

We want to determine if either of the paycheck deduction strategies reduced 
employee tardiness. Since the sample sizes are small (n < 20), we require a non-
parametric test. The Friedman test is the best statistic to analyze the data and test 
the hypothesis.
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5.3.1.1  State the Null and Research Hypotheses  The null hypothesis states 
that neither of the manager’s strategies will change employee tardiness. The research 
hypothesis states that one or both of the manager’s strategies will reduce employee 
tardiness.

The null hypothesis is

HO: θB = θM1 = θM2

The research hypothesis is

HA: One or both of the manager’s strategies will reduce employee tardiness.

5.3.1.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

5.3.1.3  Choose the Appropriate Test Statistic  The data are obtained from three 
dependent, or related, conditions that report employees’ number of monthly tardiness. 
The three samples are small with some violations of our assumptions of normality. 
Since we are comparing three dependent conditions, we will use the Friedman test.

5.3.1.4  Compute the Test Statistic  First, rank the values from each employee, 
or subject (see Table 5.2).

TABLE 5.2 

Employee

Ranks of monthly tardiness

Baseline Month 1 Month 2

1 3 2 1

2 3 2 1

3 1 2 3

4 3 2 1

5 3 1 2

6 3 1 2

7 3 1 2

Next, compute the sum of ranks for each condition. The ranks in each group 
are added to obtain a total R-value for the group.

For the baseline condition,

 RB = + + + + + + =3 3 1 3 3 3 3 19

For month 1,

 RM1 2 2 2 2 1 1 1 11= + + + + + + =

For month 2,

 RM2 1 1 3 1 2 2 2 12= + + + + + + =
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These R-values are used to compute the Fr test statistic. Use Formula 5.1 since there 
were no ties involved in the ranking:
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 Fr = 5 429.

5.3.1.5  Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic  We will use the critical value table for the Friedman test (see Table B.5 in 
Appendix B) since it includes the number of groups, k, and the number of samples, 
n, for our data. In this case, we look for the critical value for k = 3 and n = 7 with 
α = 0.05. Table B.5 returns a critical value for the Friedman test of 7.14.

5.3.1.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 7.14 and the obtained value is Fr = 5.429. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value exceeds the obtained value, we do not 
reject the null hypothesis. Since the critical value exceeds the obtained value, we do 
not reject the null hypothesis.

5.3.1.7  Interpret the Results  We did not reject the null hypothesis, suggesting 
that no significant difference exists between any of the three conditions. Therefore, 
no further comparisons are necessary with these data.

5.3.1.8  Reporting the Results  The reporting of results for the Friedman test 
should include such information as the number of subjects, the Fr statistic, degrees 
of freedom, and p-value’s relation to α.

For this example, the frequencies of employees’ (n = 7) tardiness were com-
pared over three conditions. The Friedman test was not significant (Fr(2) =  5.429, 
p  >  0.05). Therefore, we can state that the data do not support punishing tardy 
employees with $10 or $20 paycheck deductions.

5.3.2 Sample Friedman’s Test (Small Data Samples with Ties)

After the manager’s failure to reduce employee tardiness with paycheck deductions, 
she decided to try a different approach. This time, she rewarded employees when 
they arrived to work on-time. Again, she tries two strategies to improve employee 
timeliness. First, over the course of a month, she rewards employees with a $10 
bonus for each day that they arrive on-time. Second, the following month, she 
rewards employees with a $20 bonus for each day that they arrive on-time.
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Table 5.3 shows the number of times each employee was late in a given month. 
The baseline shows the employees’ monthly tardiness before any of the strategies 
in either example. Month 1 shows the employees’ monthly tardiness after a month 
of the $10 bonuses. Month 2 shows the employees’ monthly tardiness after a month 
of the $20 bonuses.

We want to determine if either of the strategies reduced employee tardiness. 
Again, since the sample sizes are small (n < 20), we use a nonparametric test. The 
Friedman test is a good statistic to analyze the data and test the hypothesis.

5.3.2.1  State the Null and Research Hypotheses  The null hypothesis states 
that neither of the manager’s strategies will change employee tardiness. The research 
hypothesis states that one or both of the manager’s strategies will reduce employee 
tardiness.

The null hypothesis is

HO: θB = θM1 = θM2

The research hypothesis is

HA: One or both of the manager’s strategies will reduce employee tardiness.

5.3.2.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

5.3.2.3  Choose the Appropriate Test Statistic  The data are obtained from 
three dependent, or related, conditions that report employees’ number of monthly 
tardiness. The three samples are small with some violations of our assumptions of 
normality. Since we are comparing three dependent conditions, we will use the 
Friedman test.

5.3.2.4  Compute the Test Statistic  First, rank the values from each employee, 
or subject (see Table 5.4).

TABLE 5.3 

Employee

Monthly tardiness

Baseline Month 1 Month 2

1 16 17 11

2 10 5 2

3 7 8 0

4 13 9 5

5 17 2 2

6 10 10 9

7 11 6 5
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Next, compute the sum of ranks for each condition. The ranks in each group 
are added to obtain a total R-value for the group.

For the baseline condition,

 RB = + + + + + + =2 3 2 3 3 2 5 3 18 5. .

For month 1,

 RM1 3 2 3 2 1 5 2 5 2 16= + + + + + + =. .

For month 2,

 RM2 1 1 1 1 1 5 1 1 7 5= + + + + + + =. .

These R-values are used to compute the Fr test statistic. Since there were ties 
involved in the rankings, we must use Formula 5.2. Finding the values for CF and 
Σrij2 first will simplify the calculation:

 C nk kF = +( ) =
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To find Σrij2, square all of the ranks. Then, add all of the squared ranks together (see 
Table 5.5):

 Σrij2 50 25 38 50 8 25= + +. . .

 Σrij2 97 0= .

Now that we have CF and Σrij2, we are ready for Formula 5.2:
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TABLE 5.4 

Employee

Ranks of monthly tardiness

Baseline Month 1 Month 2

1 2 3 1

2 3 2 1

3 2 3 1

4 3 2 1

5 3 1.5 1.5

6 2.5 2.5 1

7 3 2 1
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5.3.2.5  Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic  We will use the critical value table for the Friedman test (see Table B.5 in 
Appendix B) since it includes the number of groups, k, and the number of samples, 
n, for our data. In this case, we look for the critical value for k = 3 and n = 7 with 
α = 0.05. Table B.5 returns a critical value for the Friedman test of 7.14.

5.3.2.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 7.14 and the obtained value is Fr = 10.23. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value exceeds the obtained value, we do not 
reject the null hypothesis. Since the obtained value exceeds the critical value, we 
reject the null hypothesis.

5.3.2.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
a significant difference exists between one or more of the three conditions. In par-
ticular, both strategies seemed to result in less tardiness among employees. However, 
describing specific differences in this manner is speculative. Therefore, we need a 
technique for statistically identifying difference between conditions, or contrasts.

Sample Contrasts, or Post Hoc Tests The Friedman test identifies if a sta-
tistical difference exists; however, it does not identify how many differences exist 
and which conditions are different. To identify which conditions are different and 
which are not, we use a procedure called contrasts or post hoc tests. An appropriate 
test to use when comparing two related samples at a time is the Wilcoxon signed 
rank test described in Chapter 3.

It is important to note that performing several two-sample tests has a tendency 
to inflate the type I error rate. In our example, we would compare three groups, 
k = 3. At an α = 0.05, the type I error rate would equal 1 − (1 − 0.05)3 = 0.14.

TABLE 5.5 

Employee

Ranks of monthly tardiness

Baseline Month 1 Month 2

1 4 9 1

2 9 4 1

3 4 9 1

4 9 4 1

5 9 2.25 2.25

6 6.25 6.25 1

7 9 4 1

Σri2 50.25 38.50 8.25
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To compensate for this error inflation, we demonstrate the Bonferroni proce-
dure (see Formula 5.4). With this technique, we use a corrected α with the Wilcoxon 
signed rank tests to determine significant differences between conditions. For our 
example, we are only comparing month 1 and month 2 against the baseline. We are 
not comparing month 1 against month 2. Therefore, we are only making two com-
parisons and k = 2:

 α
α

B
k

= =
0 05

2

.

 αB = 0 025.

When we compare the three samples with the Wilcoxon signed rank tests using αB, 
we obtain the results presented in Table 5.6. Notice that the significance is one-tailed, 
or directional, since we were seeking a decline in tardiness.

TABLE 5.6 

Condition comparison Wilcoxon T statistic Rank sum difference One-tailed significance

Baseline–Month 1 3.0 18.0 − 3.0 = 15.0 0.057

Baseline–Month 2 0.0 28.0 − 0.0 = 28.0 0.009

Using αB = 0.025, we notice that the baseline–month 1 comparison does not 
demonstrate a significant difference (p >  0.025). However, the baseline–month 2 
comparison does demonstrate a significant difference (p <  0.025). Therefore, the 
data indicate that the $20 bonus reduces tardiness while the $10 bonus does not.

Note that if you are not comparing all of the samples for the Friedman test, 
then k is only the number of comparisons you are making with the Wilcoxon signed 
rank tests. Therefore, comparing fewer samples will increase the chances of finding 
a significant difference.

5.3.2.8  Reporting the Results  The reporting of results for the Friedman test 
should include such information as the number of subjects, the Fr statistic, degrees 
of freedom, and p-value’s relation to α.

For this example, the frequencies of employees’ (n = 7) tardiness were com-
pared over three conditions. The Friedman test was significant (Fr(2)  =  10.23, 
p < 0.05). In addition, follow-up contrasts using Wilcoxon signed rank tests revealed 
that $20 bonus reduces tardiness, while the $10 bonus does not.

5.3.3 Performing the Friedman Test Using SPSS

We will analyze the data from the example earlier using SPSS.

5.3.3.1  Define  Your  Variables  First, click the “Variable View” tab at the 
bottom of your screen. Then, type the names of your variables in the “Name” 
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column. As shown in Figure 5.1, we have named our variables “Baseline,” “Month_1,” 
and “Month_2.”

5.3.3.2  Type in Your Values  Click the “Data View” tab at the bottom of your 
screen and type your data under the variable names. As shown in Figure 5.2, we are 
comparing “Baseline,” “Month_1,” and “Month_2.”

5.3.3.3  Analyze Your Data  As shown in Figure 5.3, use the pull-down menus 
to choose “Analyze,” “Nonparametric Tests,” “Legacy Dialogs,” and “K Related 
Samples. . . .”

Select each of the variables that you want to compare and click the button in 
the middle to move it to the “Test Variables:” box as shown in Figure 5.4. Notice 
that the “Friedman” box is checked by default. After the variables are in the “Test 
Variables:” box, click “OK” to perform the analysis.

5.3.3.4  Interpret  the  Results  from  the  SPSS  Output  Window  The first 
output table in SPSS Output 5.1 provides the mean ranks of each condition. The 
second output table provides the Friedman test statistic, 10.231. Since this test uses 

FIGURE 5.1

FIGURE 5.2
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FIGURE 5.3

FIGURE 5.4
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a χ2 distribution, SPSS calls the Fr statistic “Chi-Square.” This table also returns the 
number of subjects (n  =  7) degrees of freedom (df  =  2) and the significance 
(p = 0.006).

Based on the results from SPSS, three conditions were compared among 
employees (n = 7). The Friedman test was significant (Fr(2) = 10.23, p < 0.05). In 
order to compare individual pairs of conditions, contrasts may be used.

Note that to perform Wilcoxon signed rank tests for sample contrasts, remem-
ber to use your corrected level of risk, αB, when examining your significance.

5.3.4 Sample Friedman’s Test (Large Data Samples  
without Ties)

After hearing of the manager’s success, the head office transferred her to a larger 
branch office. The transfer was strategic because this larger branch is dealing with 
tardiness issues among employees. The manager suggests that she use the same 
successful incentives for employee timeliness. Due to financial limitations, however, 
she is limited to offering employees smaller bonuses. First, over the course of a 
month, she rewards employees with a $2 bonus for each day that they arrive on-time. 
Second, the following month, she rewards employees with a $5 bonus for each day 
that they arrive on-time.

Table 5.7 shows the number of times each employee was late in a given month. 
The baseline shows the employees’ monthly tardiness before any of the strategies 
in either example. Month 1 shows the employees’ monthly tardiness after a month 
with $2 bonuses. Month 2 shows the employees’ monthly tardiness after a month 
with $5 bonuses.

We want to determine if either of the paycheck bonus strategies reduced employee 
tardiness. Since the sample sizes are large (n > 20), we will use χ2 for the critical value. 
The Friedman test is a good statistic to analyze the data and test the hypothesis.

5.3.4.1  State the Null and Research Hypotheses  The null hypothesis states 
that neither of the manager’s strategies will change employee tardiness. The research 

SPSS OUTPUT 5.1
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TABLE 5.7 

Employee

Monthly tardiness

Baseline Month 1 Month 2

1 16 13 12

2 10 5 12

3 7 8 9

4 13 11 5

5 17 2 6

6 10 17 9

7 11 6 7

8 9 8 10

9 12 13 7

10 10 7 8

11 5 8 4

12 11 6 12

13 13 7 6

14 4 6 10

15 10 5 7

16 8 9 6

17 8 3 12

18 15 10 12

19 2 3 11

20 2 4 5

21 10 3 1

22 12 5 6

23 8 12 3

24 11 6 1

25 4 14 5

hypothesis states that one or both of the manager’s strategies will reduce employee 
tardiness.

The null hypothesis is

HO: θB = θM1 = θM2

The research hypothesis is

HA: One or both of the manager’s strategies will reduce employee tardiness.

5.3.4.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.



110  CHAPTER 5  ComPARing moRE THAn Two RElATEd SAmPlES: THE FRiEdmAn TEST

5.3.4.3  Choose the Appropriate Test Statistic  The data are obtained from 
three dependent, or related, conditions that report employees’ number of monthly tardi-
ness. Since we are comparing three dependent conditions, we will use the Friedman test.

5.3.4.4  Compute the Test Statistic  First, rank the values from each employee 
or subject (see Table 5.8).

Next, compute the sum of ranks for each condition. The ranks in each group 
are added to obtain a total R-value for the group.

TABLE 5.8 

Employee

Ranks of monthly tardiness

Baseline Month 1 Month 2

1 3 2 1

2 2 1 3

3 1 2 3

4 3 2 1

5 3 1 2

6 2 3 1

7 3 1 2

8 2 1 3

9 2 3 1

10 3 1 2

11 2 3 1

12 2 1 3

13 3 2 1

14 1 2 3

15 3 1 2

16 2 3 1

17 2 1 3

18 3 1 2

19 1 2 3

20 1 2 3

21 3 2 1

22 3 1 2

23 2 3 1

24 3 2 1

25 1 3 2

For the baseline condition,

 RB = 56

For month 1,

 RM1 46=
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For month 2,

 RM2 48=

These R-values are used to compute the Fr test statistic. Use Formula 5.1 since there 
were no ties involved in the ranking:
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5.3.4.5  Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic  Since the data are a large sample, we will use the χ2 distribution (see Table 
B.2 found in Appendix B) to find the critical value for the Friedman test. In this 
case, we look for the critical value for df = 2 and α = 0.05. Using the table, the 
critical value for rejecting the null hypothesis is 5.99.

5.3.4.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 5.99 and the obtained value is Fr = 2.24. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value exceeds the obtained value, we do not 
reject the null hypothesis. Since the critical value exceeds the obtained value, we do 
not reject the null hypothesis.

5.3.4.7  Interpret the Results  We did not reject the null hypothesis, suggesting 
that no significant difference exists between one or more of the three conditions. In 
particular, the data suggest that neither strategy seemed to result in less tardiness 
among employees.

5.3.4.8  Reporting the Results  The reporting of results for the Friedman test 
should include such information as the number of subjects, the Fr statistic, degrees 
of freedom, and p-value’s relation to α. For this example, the frequencies of employ-
ees’ (n = 25) tardiness were compared over three conditions. The Friedman test was 
not significant (Fr(2) = 2.24, p > 0.05). Therefore, we can state that the data do not 
support providing employees with the $2 or $5 paycheck incentive.

5.4 EXAMPLES FROM THE LITERATURE

Varied examples of the nonparametric procedures described in this chapter are to be 
shown later. We have summarized each study’s research problem and researchers’ 
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rationale(s) for choosing a nonparametric approach. We encourage you to obtain 
these studies if you are interested in their results.

Marston (1996) examined teachers’ attitudes toward three models for ser-
vicing elementary students with mild disabilities. He compared special education 
resource teachers’ ratings of the three models (inclusion only, combined ser-
vices, and pull-out only) using a Friedman test. He chose this nonparametric test 
because the teachers’ attitude responses were based on rankings. When the Fried-
man test produced significant results, he modified the α with the Bonferroni 
procedure in order to avoid a ballooned type I error rate with follow-up 
comparisons.

From a Russian high school’s English as a foreign language program, 
Savignon and Sysoyev (2002) examined 30 students’ responses to explicit train-
ing in coping strategies for particular social and cultural situations. Since the 
researchers considered each student a block in a randomized block study, they 
used a Friedman test to compare the 30 students, or groups. A nonparametric 
test was chosen because there were only two possible responses for each strategy 
(1 = strategy was difficult; 0 = strategy was not difficult). When the Friedman 
test produced significant results, they used a follow-up sign test to examine each 
pair for differences in response to find out which of seven strategies were more 
difficult than others.

Cady et al. (2006) examined math teachers beliefs about the teaching and 
learning of mathematics over time. Since their sample size was small (n = 12), they 
used a Friedman test to compare scores of participants’ survey responses. When 
participants’ scores on the surveys differed significantly, the researchers performed 
follow-up pairwise analyses with the Wilcoxon signed rank test.

Hardré et al. (2007) sought to determine if computer-based, paper-based, and 
web-based test administrations produce the same results. They compared university 
students’ performance on each of the three test styles. Since normality violations 
were observed, the researchers used a Friedman test to compare correlations of the 
three methods. Follow-up contrast tests were not performed since no significant 
differences were observed.

5.5 SUMMARY

More than two samples that are related may be compared using the Friedman test. 
The parametric equivalent to this test is known as the repeated measures ANOVA. 
When the Friedman test produces significant results, it does not identify which nor 
how many pairs of conditions are significantly different. The Wilcoxon signed rank 
test, with a Bonferroni procedure to avoid type I error rate inflation, is a useful 
method for comparing individual condition pairs.

In this chapter, we described how to perform and interpret a Friedman test 
followed with sample contrasts. We also explained how to perform the procedures 
using SPSS. Finally, we offered varied examples of these nonparametric statistics 
from the literature. The next chapter will involve a nonparametric procedure for 
comparing more than two unrelated samples.
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5.6 PRACTICE QUESTIONS

1. A graduate student performed a pilot study for his dissertation. He wanted to 
examine the effects of animal companionship on elderly males. He selected 10 
male participants from a nursing home. Then he used an ABAB research design, 
where A represented a week with the absence of a cat and B represented a week 
with the presence of a cat. At the end of each week, he administered a 20-point 
survey to measure quality of life satisfaction. The survey results are presented in 
Table 5.9.

TABLE 5.9 

Participants Week 1 Week 2 Week 3 Week 4

1 7 6 8 9

2 9 8 10 7

3 15 18 16 17

4 7 6 8 9

5 7 8 10 11

6 10 14 13 11

7 12 19 11 13

8 7 4 2 5

9 8 7 9 5

10 12 16 14 15

Use a Friedman test to determine if one or more of the groups are significantly 
different. Since this is pilot study, use α = 0.10. If a significant difference exists, 
use Wilcoxon signed rank tests to identify which groups are significantly differ-
ent. Use the Bonferroni procedure to limit the type I error rate. Report your 
findings.

2. A physical education teacher conducted an action research project to examine a 
strength and conditioning program. Using 12 male participants, she measures the 
number of curl ups they could do in 1  min. She measured their performance 
before the programs. Then, she measured their performance at 1 month intervals. 
Table 5.10 presents the performance results.

TABLE 5.10 

Participants

Number of curl ups in one minute

Baseline Month 1 Month 2

1 66 67 69

2 49 50 56

3 51 52 49

(Continued)
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Use a Friedman test with α = 0.05 to determine if one or more of the groups are 
significantly different. The teacher is expecting performance gains, so if a sig-
nificant difference exists, use one-tailed Wilcoxon signed rank tests to identify 
which groups are significantly different. Use the Bonferroni procedure to limit 
the type I error rate. Report your findings.

5.7 SOLUTIONS TO PRACTICE QUESTIONS

1. The results from the Friedman test are displayed in SPSS Output 5.2.

Participants

Number of curl ups in one minute

Baseline Month 1 Month 2

4 65 65 69

5 42 43 46

6 38 39 40

7 33 31 39

8 41 41 44

9 46 47 48

10 45 46 46

11 36 33 34

12 51 55 67

TABLE 5.10  (Continued)

SPSS OUTPUT 5.2

According to the data, the results from the Friedman test indicated that the four 
conditions were not significantly different (Fr(3) = 2.160, p > 0.10). Therefore, 
no follow-up contrasts are needed.

2. The results from the Friedman test are displayed in SPSS Output 5.3a.
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SPSS OUTPUT 5.3

SPSS OUTPUT 5.4

According to the data, the results from the Friedman test indicated that one or more 
of the three groups are significantly different (Fr(2) = 10.978, p < 0.05). Therefore, we 
must examine each set of samples with follow-up contrasts to find the differences 
between groups. We compare the samples with Wilcoxon signed rank tests. Since 
there are k = 3 groups, use αB = 0.0167 to avoid type I error rate inflation. The results 
from the Wilcoxon signed rank tests are displayed in SPSS Outputs 5.4 and 5.5.



116  CHAPTER 5  ComPARing moRE THAn Two RElATEd SAmPlES: THE FRiEdmAn TEST

a. Baseline–Month 1 Comparison. The results from the Wilcoxon signed rank 
test (T = 17.0, n = 12, p > 0.0167) indicated that the two samples were not 
significantly different.

b. Month 1–Month 2 Comparison. The results from the Wilcoxon signed rank 
test (T = 6.0, n = 12, p < 0.0167) indicated that the two samples were sig-
nificantly different.

c. Baseline–Month 2 Comparison. The results from the Wilcoxon signed rank 
test (T = 7.0, n = 12, p < 0.0167) indicated that the two samples were sig-
nificantly different.

SPSS OUTPUT 5.5
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CHAPTER 6
COMPARING MORE THAN TWO 
UNRELATED SAMPLES: THE 
KRUSKAL–WALLIS H-TEST

6.1 OBJECTIVES

In this chapter, you will learn the following items.

•	 How to compute the Kruskal–Wallis H-test.

•	 How to perform contrasts to compare samples.

•	 How to perform the Kruskal–Wallis H-test and associated sample contrasts 
using SPSS®.

6.2 INTRODUCTION

A professor asked her students to complete end-of-course evaluations for her 
Psychology 101 class. She taught four sections of the course and wants to 
compare the evaluation results from each section. Since the evaluations were 
based on a five-point rating scale, she decides to use a nonparametric procedure. 
Moreover, she recognizes that the four sets of evaluation results are independent 
or unrelated. In other words, no single score in any single class is dependent on 
any other score in any other class. This professor could compare her sections 
using the Kruskal–Wallis H-test.

The Kruskal–Wallis H-test is a nonparametric statistical procedure for compar-
ing more than two samples that are independent or not related. The parametric 
equivalent to this test is the one-way analysis of variance (ANOVA).

When the Kruskal–Wallis H-test leads to significant results, then at least one 
of the samples is different from the other samples. However, the test does not identify 
where the difference(s) occurs. Moreover, it does not identify how many differences 
occur. In order to identify the particular differences between sample pairs, a researcher 
might use sample contrasts, or post hoc tests, to analyze the specific sample pairs 
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for significant difference(s). The Mann–Whitney U-test is a useful method for per-
forming sample contrasts between individual sample sets.

In this chapter, we will describe how to perform and interpret a Kruskal–Wallis 
H-test followed with sample contrasts. We will also explain how to perform the 
procedures using SPSS. Finally, we offer varied examples of these nonparametric 
statistics from the literature.

6.3 COMPUTING THE KRUSKAL–WALLIS  
H-TEST STATISTIC

The Kruskal–Wallis H-test is used to compare more than two independent samples. 
When stating our hypotheses, we state them in terms of the population. Moreover, 
we examine the population medians, θi, when performing the Kruskal–Wallis 
H-test.

To compute the Kruskal–Wallis H-test statistic, we begin by combining all of 
the samples and rank ordering the values together. Use Formula 6.1 to determine an 
H statistic:

 H
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( )  (6.1)

where N is the number of values from all combined samples, Ri is the sum of the 
ranks from a particular sample, and ni is the number of values from the correspond-
ing rank sum.

The degrees of freedom, df, for the Kruskal–Wallis H-test are determined by 
using Formula 6.2:

 df k= −1  (6.2)

where df is the degrees of freedom and k is the number of groups.
Once the test statistic H is computed, it can be compared with a table of 

critical values (see Table B.6 in Appendix B) to examine the groups for signifi-
cant differences. However, if the number of groups, k, or the numbers of values 
in each sample, ni, exceed those available from the table, then a large sample 
approximation may be performed. Use a table with the χ2 distribution (see Table 
B.2 in Appendix B) to obtain a critical value when performing a large sample 
approximation.

If ranking of values results in any ties, a tie correction is required. In that case, 
find a new H statistic by dividing the original H statistic by the tie correction. Use 
Formula 6.3 to determine the tie correction value;
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where CH is the ties correction, T is the number of values from a set of ties, and N 
is the number of values from all combined samples.
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If the H statistic is not significant, then no differences exist between any of 
the samples. However, if the H statistic is significant, then a difference exists between 
at least two of the samples. Therefore, a researcher might use sample contrasts 
between individual sample pairs, or post hoc tests, to determine which of the sample 
pairs are significantly different.

When performing multiple sample contrasts, the type I error rate tends to 
become inflated. Therefore, the initial level of risk, or α, must be adjusted. We 
demonstrate the Bonferroni procedure, shown in Formula 6.4, to adjust α:

 α
α

B
k

=  (6.4)

where αB is the adjusted level of risk, α is the original level of risk, and k is the 
number of comparisons.

6.3.1 Sample Kruskal–Wallis H-Test (Small Data Samples)

Researchers were interested in studying the social interaction of different adults. 
They sought to determine if social interaction can be tied to self-confidence. The 
researchers classified 17 participants into three groups based on the social interaction 
exhibited. The participant groups were labeled as follows:

High  =  constant interaction; talks with many different people; initiates 
discussion

Medium = interacts with a variety of people; some periods of isolation; tends 
to focus on fewer people

Low =  remains mostly isolated from others; speaks if spoken to, but leaves 
interaction quickly

After the participants had been classified into the three social interaction groups, 
they were directed to complete a self-assessment of self-confidence on a 25-point 
scale. Table 6.1 shows the scores obtained by each of the participants, with 25 points 
being an indication of high self-confidence.

TABLE 6.1

Original ordinal self-confidence scores placed 
within social interaction groups

High Medium Low

21 19 7

23 5 8

18 10 15

12 11 3

19 9 6

20 4
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The original survey scores obtained were converted to an ordinal scale prior 
to the data analysis. Table 6.1 shows the ordinal values placed in the social interac-
tion groups.

We want to determine if there is a difference between any of the three groups 
in Table 6.1. Since the data belong to an ordinal scale and the sample sizes are small 
(n <  20), we will use a nonparametric test. The Kruskal–Wallis H-test is a good 
choice to analyze the data and test the hypothesis.

6.3.1.1  State  the  Null  and  Research  Hypotheses  The null hypothesis 
states that there is no tendency for self-confidence to rank systematically higher or 
lower for any of the levels of social interaction. The research hypothesis states that 
there is a tendency for self-confidence to rank systematically higher or lower for at 
least one level of social interaction than at least one of the other levels. We generally 
use the concept of “systematic differences” in the hypotheses.

The null hypothesis is

HO: θL = θM = θH

The research hypothesis is

HA: There is a tendency for self-confidence to rank systematically higher or 
lower for at least one level of social interaction when compared with the 
other levels.

6.3.1.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

6.3.1.3  Choose the Appropriate Test Statistic  The data are obtained from 
three independent, or unrelated, samples of adults who are being assigned to three 
different social interaction groups by observation. They are then being assessed using 
a self-confidence scale with a total of 25 points. The three samples are small with 
some violations of our assumptions of normality. Since we are comparing three 
independent samples, we will use the Kruskal–Wallis H-test.

6.3.1.4  Compute the Test Statistic  First, combine and rank the three samples 
together (see Table 6.2).

Place the participant ranks in their social interaction groups to compute the 
sum of ranks Ri for each group (see Table 6.3).

Next, compute the sum of ranks for each social interaction group. The ranks 
in each group are added to obtain a total R-value for the group.

For the high group,

 RH = + + + + + =10 12 13 5 15 16 17 83 5. .

 nH = 6
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For the medium group,

 RM = + + + + =3 7 8 9 13 5 40 5. .

 nM = 5

For the low group,

 RL = + + + + + =1 2 4 5 6 11 29

 nL = 6

These R-values are used to compute the Kruskal–Wallis H-test statistic (see Formula 
6.1). The number of participants in each group is identified by a lowercase n. The 
total group size in the study is identified by the uppercase N.

TABLE 6.2 

Original ordinal score Participant rank Social interaction group

3 1 Low

4 2 Low

5 3 Medium

6 4 Low

7 5 Low

8 6 Low

9 7 Medium

10 8 Medium

11 9 Medium

12 10 High

15 11 Low

18 12 High

19 13.5 Medium

19 13.5 High

20 15 High

21 16 High

23 17 High

TABLE 6.3 

Ordinal data ranks

High Medium Low

10 3 1 N = 17

12 7 2

13.5 8 4

15 9 5

16 13.5 6

17 11
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Now, using the data from Table 6.3, compute the H-test statistic using Formula 
6.1:

H
N N

R

n
Ni

ii

k

=
+

− +
=

∑12

1
3 1

2

1
( )

( )
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83 5
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6
3 17 1

0 0392 11

2 2 2
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. .
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. 662 04 328 05 140 17 54 0 0392 1630 26 54 63 93 54. . . . . .+ +( )− = ( )− = −

H = 9 93.

Since there was a tie involved in the ranking, correct the value of H. First, compute 
the tie correction (see Formula 6.2). Then, divide the original H statistic by the ties 
correction CH:

 C
T T

N N
H = −

−

−
= −

−( )
−

= −
−

−
= −∑

1 1
2 2

17 17
1

8 2

4913 17
1 0 0001

3

3

3

3

( ) ( )

( )
.

 CH = 0 9988.

Next, we divide to find the corrected H statistic:

 corrected originalH H CH= ÷ = ÷ =9 93 0 9988 9 94. . .

For this set of data, notice that the corrected H does not differ greatly from the 
original H. With the correction, H = 9.94.

6.3.1.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic  We 
will use the critical value table for the Kruskal–Wallis H-test (see Table B.6 in 
Appendix B) since it includes the number of groups, k, and the numbers of samples, 
n, for our data. In this case, we look for the critical value for k =  3 and n1 =  6, 
n2 = 6, and n3 = 5 with α = 0.05. Table B.5 returns a critical value for the Kruskal–
Wallis H-test of 5.76.

6.3.1.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 5.76 and the obtained value is H = 9.94. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value exceeds the obtained value, we do not 
reject the null hypothesis. Since critical value is less than the obtained value, we 
must reject the null hypothesis.

At this point, it is worth mentioning that larger samples often result in more 
ties. While comparatively small, as observed in step 4, corrections for ties can make 
a difference in the decision regarding the null hypothesis. If the H were near the 
critical value of 5.99 for df = 2 (e.g., H = 5.80), and the tie correction calculated 
to be 0.965, the decision would be to reject the null hypothesis with the correction 
(H = 6.01), but to not reject the null hypothesis without the correction. Therefore, 
it is important to perform tie corrections.
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6.3.1.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
a real difference in self-confidence exists between one or more of the three social 
interaction types. In particular, the data show that those who were classified as fitting 
the definition of the “low” group were mostly people who reported poor self-
confidence, and those who were in the “high” group were mostly people who 
reported good self-confidence. However, describing specific differences in this 
manner is speculative. Therefore, we need a technique for statistically identifying 
difference between groups, or contrasts.

Sample Contrasts, or Post Hoc Tests The Kruskal–Wallis H-test identifies 
if a statistical difference exists; however, it does not identify how many differences 
exist and which samples are different. To identify which samples are different and 
which are not, we can use a procedure called contrasts or post hoc tests. Methods 
for comparing two samples at a time are described in Chapters 3 and 4. The examples 
in this chapter compare unrelated samples so we will use the Mann–Whitney 
U-test.

It is important to note that performing several two-sample tests has a tendency 
to inflate the type I error rate. In our example, we would compare three groups, 
k = 3. At α = 0.05, the type I error rate would be 1 − (1 − 0.05)3 = 0.14.

To compensate for this error inflation, we demonstrate the Bonferroni proce-
dure (see Formula 6.4). With this technique, we use a corrected α with the Mann–
Whitney U-tests to determine significant differences between samples. For our 
example,

 α
α

B
k

= =
0 05

3

.

 αB = 0 0167.

When we compare each set of samples with the Mann–Whitney U-tests and use αB, 
we obtain the following results presented in Table 6.4.

TABLE 6.4 

Group comparison Mann–Whitney U statistic Rank sum difference Significance

High–medium 2.5 48.5 − 17.5 = 31.0 0.017

Medium–low 7.0 38.0 − 28.0 = 10.0 0.177

High–low 1.0 56.0 − 22.0 = 34.0 0.004

Since αB = 0.0167, we notice that the high–low group comparison is indeed 
significantly different. The medium–low group comparison is not significant. The 
high–medium group comparison requires some judgment since it is difficult to tell 
if the difference is significant or not; the way the value is rounded off could change 
the result.
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Note that if you are not comparing all of the samples for the Kruskal–Wallis 
H-test, then k is only the number of comparisons you are making with the Mann–
Whitney U-tests. Therefore, comparing fewer samples will increase the chances of 
finding a significant difference.

6.3.1.8  Reporting the Results  The reporting of results for the Kruskal–Wallis 
H-test should include such information as sample size for all of the groups, the H 
statistic, degrees of freedom, and p-value’s relation to α. For this example, three social 
interaction groups were compared: high (nH  =  6), medium (nM  =  5), and low 
(nL = 6). The Kruskal–Wallis H-test was significant (H(2) = 9.94, p < 0.05). In order to 
compare each set of samples, contrasts may be used as described earlier in this chapter.

6.3.2 Performing the Kruskal–Wallis H-Test Using SPSS

We will analyze the data from the example earlier using SPSS.

6.3.2.1  Define Your Variables  First, click the “Variable View” tab at the bottom 
of your screen. Then, type the names of your variables in the “Name” column. Unlike 
the Friedman’s ANOVA described in Chapter 5, you cannot simply enter each sample 
into a separate column to execute the Kruskal–Wallis H-test. You must use a group-
ing variable. In Figure 6.1, the first variable is the grouping variable that we called 
“Group.” The second variable that we called “Score” will have our actual values.

FIGURE 6.1

When establishing a grouping variable, it is often easiest to assign each group 
a whole number value. In our example, our groups are “High,” “Medium,” and 
“Low.” Therefore, we must set our grouping variables for the variable “Group.” First, 
we selected the “Values” column and clicked the gray square as shown in Figure 
6.2. Then, we set a value of 1 to equal “High,” a value of 2 to equal “Medium,” and 
a value of 3 equal to “Low.” Each value label is established and moved to the list 
when we click the “Add” button. Once we click the “OK” button, we are returned 
to the SPSS Variable View.

6.3.2.2  Type in Your Values  Click the “Data View” tab at the bottom of your 
screen as shown in Figure 6.3. Type in the values for all three samples in the “Score” 
column. As you do so, type in the corresponding grouping variable in the “Group” 
column. For example, all of the values for “High” are signified by a value of 1 in 
the grouping variable column that we called “Group.”



6.3 COMPUTING THE KRUSKAL–WALLIS H-TEST STATISTIC  125

FIGURE 6.2

FIGURE 6.3

6.3.2.3  Analyze Your Data  As shown in Figure 6.4, use the pull-down menus 
to choose “Analyze,” “Nonparametric Tests,” “Legacy Dialogs,” and “K Independent 
Samples. . . .”

Use the top arrow button to place your variable with your data values, or 
dependent variable (DV), in the box labeled “Test Variable List:.” Then, use the lower 
arrow button to place your grouping variable, or independent variable (IV), in the 
box labeled “Grouping Variable.” As shown in Figure 6.5, we have placed the 
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FIGURE 6.4

FIGURE 6.5
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FIGURE 6.6

FIGURE 6.7

“Score” variable in the “Test Variable List” and the “Group” variable in the “Group-
ing Variable” box.

Click on the “Define Range .  .  .” button to assign a reference value to your 
independent variable (i.e., “Grouping Variable”).

As shown in Figure 6.6, type 1 into the box next to “Minimum” and 3 in the 
box next to “Maximum.” Then, click “Continue.” This step references the value 
labels you defined when you established your grouping variable.

Now that the groups have been assigned (see Fig. 6.7), click “OK” to perform 
the analysis.

6.3.2.4  Interpret the Results from the SPSS Output Window  SPSS Output 
6.1 provides the mean ranks of groups and group sizes. The second output table 
provides the Kruskal–Wallis H-test statistic (H = 9.944). Since this test uses a χ2 
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distribution, SPSS calls the H statistic “Chi-Square.” This table also returns the 
degrees of freedom (df = 2) and the significance (p = 0.007).

Based on the results from SPSS, three social interaction groups were com-
pared: high (nH = 6), medium (nM = 5), and low (nL = 6). The Kruskal–Wallis H-test 
was significant (H(2)  =  9.94, p  <  0.05). In order to compare individual pairs of 
samples, contrasts must be used.

Note that to perform Mann–Whitney U-tests for sample contrasts, simply 
use the grouping values you established when you defined your variables in  
step 1. Remember to use your corrected level of risk αB when examining your 
significance.

6.3.3 Sample Kruskal–Wallis H-Test (Large Data Samples)

Researchers were interested in continuing their study of social interaction. In a 
new study, they examined the self-confidence of teenagers with respect to social 
interaction. Three levels of social interaction were based on the following 
characteristics:

High  =  constant interaction; talks with many different people; initiates 
discussion

Medium = interacts with a variety of people; some periods of isolation; tends 
to focus on fewer people

Low =  remains mostly isolated from others; speaks if spoken to, but leaves 
interaction quickly

The researchers assigned each participant into one of the three social interaction 
groups. Researchers administered a self-assessment of self-confidence. The assess-

SPSS OUTPUT 6.1
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ment instrument measured self-confidence on a 50-point ordinal scale. Table 6.5 
shows the scores obtained by each of the participants, with 50 points indicating high 
self-confidence.

We want to determine if there is a difference between any of the three groups 
in Table 6.5. The Kruskal–Wallis H-test will be used to analyze the data.

6.3.3.1  State the Null and Research Hypotheses  The null hypothesis states 
that there is no tendency for teen self-confidence to rank systematically higher or 
lower for any of the levels of social interaction. The research hypothesis states that 
there is a tendency for teen self-confidence to rank systematically higher or lower 
for at least one level of social interaction than at least one of the other levels. We 
generally use the concept of “systematic differences” in the hypotheses.

The null hypothesis is

HO: θL = θM = θH

TABLE 6.5 

Original self-confidence scores placed within 
social interaction groups

High Medium Low

18 35 37

27 47 24

24 11 7

30 31 19

48 12 20

16 39 14

43 11 38

46 14 16

49 40 12

34 48 31

28 32 15

20 9 20

37 44 25

21 30 10

20 33 36

16 26 45

23 22 48

12 3 42

50 41 42

25 17 21

8

10

41
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The research hypothesis is

HA: There is a tendency for teen self-confidence to rank systematically higher 
or lower for at least one level of social interaction when compared with the 
other levels.

6.3.3.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

6.3.3.3  Choose the Appropriate Test Statistic  The data are obtained from 
three independent, or unrelated, samples of teenagers. They were assessed using an 
instrument with a 50-point ordinal scale. Since we are comparing three independent 
samples of values based on an ordinal scale instrument, we will use the Kruskal–
Wallis H-test.

6.3.3.4  Compute the Test Statistic  First, combine and rank the three samples 
together (see Table 6.6).

TABLE 6.6 

Original ordinal score Participant rank Social interaction group

3 1 Medium

7 2 Low

8 3 Medium

9 4 Medium

10 5.5 Medium

10 5.5 Low

11 7.5 Medium

11 7.5 Medium

12 10 High

12 10 Medium

12 10 Low

14 12.5 Medium

14 12.5 Low

15 14 Low

16 16 High

16 16 High

16 16 Low

17 18 Medium

18 19 High

19 20 Low

20 22.5 High

20 22.5 High
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Original ordinal score Participant rank Social interaction group

20 22.5 Low

20 22.5 Low

21 25.5 High

21 25.5 Low

22 27 Medium

23 28 High

24 29.5 High

24 29.5 Low

25 31.5 High

25 31.5 Low

26 33 Medium

27 34 High

28 35 High

30 36.5 High

30 36.5 Medium

31 38.5 Medium

31 38.5 Low

32 40 Medium

33 41 Medium

34 42 High

35 43 Medium

36 44 Low

37 45.5 High

37 45.5 Low

38 47 Low

39 48 Medium

40 49 Medium

41 50.5 Medium

41 50.5 Medium

42 52.5 Low

42 52.5 Low

43 54 High

44 55 Medium

45 56 Low

46 57 High

47 58 Medium

48 60 High

48 60 Medium

48 60 Low

49 62 High

50 63 High

TABLE 6.6  (Continued)
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Place the participant ranks in their social interaction groups to compute the 
sum of ranks, Ri, for each group (see Table 6.7).

Next, compute the sum of ranks for each social interaction group. The ranks 
in each group are added to obtain a total R-value for the group.

For the high group, RH = 709.5 and nH = 20.

For the medium group, RM = 699 and nM = 23.

For the low group, RL = 607.5 and nL = 20.

These R-values are used to compute the Kruskal–Wallis H-test statistic (see Formula 
6.1). The number of participants in each group is identified by a lowercase n. The total 
group size in the study is identified by the uppercase N. In this study, N = 63.

Now, using the data from Table 6.7, compute the H statistic using Formula 
6.1:

 H
N N

R

n
Ni

ii

k

=
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− +
=

∑12

1
3 1

2

1
( )
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TABLE 6.7 

Ordinal data ranks

High Medium Low

10 1 2

16 3 5.5

16 4 10

19 5.5 12.5

22.5 7.5 14

22.5 7.5 16

25.5 10 20

28 12.5 22.5

29.5 18 22.5

31.5 27 25.5

34 33 29.5

35 36.5 31.5

36.5 38.5 38.5

42 40 44

45.5 41 45.5

54 43 47

57 48 52.5

60 49 52.5

62 50.5 56

63 50.5 60

55

58

60
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Since there were ties involved in the ranking, correct the value of H. First, compute 
the tie correction (see Formula 6.2). There were 11 sets of ties with two values, three 
sets of ties with three values, and one set of ties with four values. Then, divide the 
original H statistic by the tie correction CH:
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 CH = 0 9992.

Next, we divide to find the corrected H statistic:

 corrected originalH H CH= ÷ = ÷1 053 0 9992. .

For this set of data, notice that the corrected H does not differ greatly from the 
original H. With the correction, H = 1.054.

6.3.3.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic  Since 
the data have at least one large sample, we will use the χ2 distribution (see Table 
B.2 found in Appendix B) to find the critical value for the Kruskal–Wallis H-test. 
In this case, we look for the critical value for df = 2 and α = 0.05. Using the table, 
the critical value for rejecting the null hypothesis is 5.99.

6.3.3.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 5.99 and the obtained value is H = 1.054. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value exceeds the obtained value, we do not 
reject the null hypothesis. Since the critical value exceeds the obtained value, we do 
not reject the null hypothesis.

6.3.3.7  Interpret the Results  We did not reject the null hypothesis, suggesting 
that no real difference exists between any of the three groups. In particular, the data 
suggest that there is no difference in self-confidence between one or more of the 
three social interaction types.

6.3.3.8  Reporting the Results  The reporting of results for the Kruskal–Wallis 
H-test should include such information as sample size for each of the groups, the H 
statistic, degrees of freedom, and p-value’s relation to α. For this example, three 
social interaction groups were compared. The three social interaction groups were 
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high (nH = 20), medium (nM = 23), and low (nL = 20). The Kruskal–Wallis H-test 
was not significant (H(2) = 1.054, p < 0.05).

6.4 EXAMPLES FROM THE LITERATURE

To be shown are varied examples of the nonparametric procedures described in  
this chapter. We have summarized each study’s research problem and researchers’ 
rationale(s) for choosing a nonparametric approach. We encourage you to obtain 
these studies if you are interested in their results.

Gömleksız and Bulut (2007) examined primary school teachers’ views on the 
implementation and effectiveness of a new primary school mathematics curriculum. 
When they examined the data, some of the samples were found to be non-normal. 
For those samples, they used a Kruskal–Wallis H-test, followed by Mann–Whitney 
U-tests to compare unrelated samples.

In the study of Finson et al. (2006), the students of nine middle school teachers 
were asked to draw a scientist. Based on the drawings, students’ perceptions of 
scientists were compared with their teachers’ teaching styles using the Kruskal–
Wallis H-test. Then, the samples were individually compared using Mann–Whitney 
U-test. The researchers used nonparametric statistical analyses because only rela-
tively small sample sizes of subjects were available.

Belanger and Desrochers (2001) investigated the nature of infants’ ability to 
perceive event causality. The researchers noted that they chose nonparametric sta-
tistical tests because the data samples lacked a normal distribution based on results 
from a Shapiro–Wilk test. In addition, they stated that the sample sizes were small. 
A Kruskal–Wallis H-test revealed no significant differences between samples. There-
fore, they did not perform any sample contrasts.

Plata and Trusty (2005) investigated the willingness of high school boys’ 
willingness to allow same-sex peers with learning disabilities (LDs) to partici-
pate in school activities and out-of-school activities. The authors compared the 
willingness of 38 educationally successful and 33 educationally at-risk boys. The 
boys were from varying socioeconomic backgrounds. Due to the data’s ordinal 
nature and small sample sizes among some samples, nonparametric statistics 
were used for the analysis. The Kruskal–Wallis H-test was chosen for multiple 
comparisons. When sample pairs were compared, the researchers performed a 
post-hoc analysis of the differences between mean rank pairs using a multiple 
comparison technique.

6.5 SUMMARY

More than two samples that are not related may be compared using a nonparametric 
procedure called the Kruskal–Wallis H-test. The parametric equivalent to this test is 
known as the one-way analysis of variance (ANOVA). When the Kruskal–Wallis 
H-test produces significant results, it does not identify which nor how many sample 
pairs are significantly different. The Mann–Whitney U-test, with a Bonferroni procedure 
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to avoid type I error rate inflation, is a useful method for comparing individual 
sample pairs.

In this chapter, we described how to perform and interpret a Kruskal–Wallis 
H-test followed with sample contrasts. We also explained how to perform the pro-
cedures using SPSS. Finally, we offered varied examples of these nonparametric 
statistics from the literature. The next chapter will involve comparing two 
variables.

6.6 PRACTICE QUESTIONS

1. A researcher conducted a study with n = 15 participants to investigate strength 
gains from exercise. The participants were divided into three groups and given 
one of three treatments. Participants’ strength gains were measured and ranked. 
The rankings are presented in Table 6.8.

TABLE 6.8 

Treatments

I II III

7 13 12

2 1 5

4 7 16

11 8 9

15 3 14

Use a Kruskal–Wallis H-test with α = 0.05 to determine if one or more of 
the groups are significantly different. If a significant difference exists, use a two-
tailed Mann–Whitney U-tests or two-sample Kolmogorov–Smirnov tests to iden-
tify which groups are significantly different. Use the Bonferroni procedure to 
limit the type I error rate. Report your findings.

2. A researcher investigated how physical attraction influences the perception among 
others of a person’s effectiveness with difficult tasks. The photographs of 24 
people were shown to a focus group. The group was asked to classify the photos 
into three groups: very attractive, average, and very unattractive. Then, the group 
ranked the photographs according to their impression of how capable they were 
of solving difficult problems. Table 6.9 shows the classification and rankings of 
the people in the photos (1 = most effective, 24 = least effective).

Use a Kruskal–Wallis H-test with α = 0.05 to determine if one or more of 
the groups are significantly different. If a significant difference exists, use two-
tailed Mann–Whitney U-tests to identify which groups are significantly different. 
Use the Bonferroni procedure to limit the type I error rate. Report your findings.
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6.7 SOLUTIONS TO PRACTICE QUESTIONS

1. The results from the Kruskal–Wallis H-test are displayed in SPSS Output 6.2.

TABLE 6.9 

Very attractive Average Very unattractive

1 3 11

2 4 15

5 8 16

6 9 18

7 13 20

10 14 21

12 19 23

17 22 24

SPSS OUTPUT 6.2

According to the data, the results from the Kruskal–Wallis H-test indicated that 
the three groups are not significantly different (H(2) = 2.800, p > 0.05). Therefore, 
no follow-up contrasts are needed.

2. The results from the Kruskal–Wallis H-test are displayed in SPSS Output 6.3.
According to the data, the results from the Kruskal–Wallis H-test indicated that 
one or more of the three groups are significantly different (H(2) = 9.920, p < 0.05). 
Therefore, we must examine each set of samples with follow-up contrasts to find 
the differences between groups.

Based on the significance from the Kruskal–Wallis H-test, we compare 
the samples with Mann–Whitney U-tests. Since there are k  =  3 groups, use 
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SPSS OUTPUT 6.3

SPSS OUTPUT 6.4

αB  =  0.0167 to avoid type I error rate inflation. The results from the Mann–
Whitney U-tests are displayed in the remaining SPSS Output 6.4, SPSS Output 
6.5, and SPSS Output 6.6.
a. Very Attractive–Attractive Comparison.

The results from the Mann–Whitney U-test (U  =  20.0, n1  =  8, n2  =  8, 
p > 0.0167) indicated that the two samples were not significantly different.
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b. Attractive–Very Unattractive Comparison.
The results from the Mann–Whitney U-test (U  =  12.0, n1  =  8, n2  =  8, 
p > 0.0167) indicated that the two samples were not significantly different.

c. Very Attractive–Very Unattractive Comparison.
The results from the Mann–Whitney U-test (U  =  4.0, n1  =  8, n2  =  8, 
p < 0.0167) indicated that the two samples were significantly different.

SPSS OUTPUT 6.6

SPSS OUTPUT 6.5
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CHAPTER 7
COMPARING VARIABLES OF 
ORDINAL OR DICHOTOMOUS 
SCALES: SPEARMAN RANK-
ORDER, POINT-BISERIAL, AND 
BISERIAL CORRELATIONS

7.1 OBJECTIVES

In this chapter, you will learn the following items:

•	 How to compute the Spearman rank-order correlation coefficient.

•	 How to perform the Spearman rank-order correlation using SPSS®.

•	 How to compute the point-biserial correlation coefficient.

•	 How to perform the point-biserial correlation using SPSS.

•	 How to compute the biserial correlation coefficient.

7.2 INTRODUCTION

The statistical procedures in this chapter are quite different from those in the last 
several chapters. Unlike this chapter, we had compared samples of data. This chapter, 
however, examines the relationship between two variables. In other words, this 
chapter will address how one variable changes with respect to another.

The relationship between two variables can be compared with a correlation 
analysis. If any of the variables are ordinal or dichotomous, we can use a nonpara-
metric correlation. The Spearman rank-order correlation, also called the Spearman’s 
ρ, is used to compare the relationship between ordinal, or rank-ordered, variables. 
The point-biserial and biserial correlations are used to compare the relationship 
between two variables if one of the variables is dichotomous. The parametric equiva-
lent to these correlations is the Pearson product-moment correlation.
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In this chapter, we will describe how to perform and interpret a Spearman 
rank-order, point-biserial, and biserial correlations. We will also explain how to 
perform the procedures using SPSS. Finally, we offer varied examples of these 
nonparametric statistics from the literature.

7.3 THE CORRELATION COEFFICIENT

When comparing two variables, we use an obtained value called a correlation coef-
ficient. A population’s correlation coefficient is represented by the Greek letter rho, 
ρ. A sample’s correlation coefficient is represented by the letter r.

We will describe two types of relationships between variables. A direct rela-
tionship is a positive correlation with an obtained value ranging from 0 to 1.0. As 
one variable increases, the other variable also increases. An indirect, or inverse, 
relationship is a negative correlation with an obtained value ranging from 0 to −1.0. 
In this case, one variable increases as the other variable decreases.

In general, a significant correlation coefficient also communicates the relative 
strength of a relationship between the two variables. A value close to 1.0 or −1.0 
indicates a nearly perfect relationship, while a value close to 0 indicates an especially 
weak or trivial relationship. Cohen (1988, 1992) presented a more detailed descrip-
tion of a correlation coefficient’s relative strength. Table 7.1 summarizes his findings.

TABLE 7.1

Correlation coefficient for 
a direct relationship

Correlation coefficient for 
an indirect relationship

Relationship strength of 
the variables

0.0 0.0 None/trivial

0.1 −0.1 Weak/small

0.3 −0.3 Moderate/medium

0.5 −0.5 Strong/large

1.0 −1.0 Perfect

There are three important caveats to consider when assigning relative strength 
to correlation coefficients, however. First, Cohen’s work was largely based on behav-
ioral science research. Therefore, these values may be inappropriate in fields such 
as engineering or the natural sciences. Second, the correlation strength assignments 
vary for different types of statistical tests. Third, r-values are not based on a linear 
scale. For example, r = 0.6 is not twice as strong as r = 0.3.

7.4 COMPUTING THE SPEARMAN RANK-ORDER 
CORRELATION COEFFICIENT

The Spearman rank-order correlation is a statistical procedure that is designed to 
measure the relationship between two variables on an ordinal scale of measurement 
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if the sample size is n ≥ 4. Use Formula 7.1 to determine a Spearman rank-order 
correlation coefficient rs if none of the ranked values are ties. Sometimes, the symbol 
rs is represented by the Greek symbol rho, or ρ:

 r
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n n
s

i
= −

−
∑

1
6

1

2

2( )
 (7.1)

where n is the number of rank pairs and Di is the difference between a ranked pair.
If ties are present in the values, use Formula 7.2, Formula 7.3, and Formula 

7.4 to determine rs:
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g is the number of tied groups in that variable and ti is the number of tied values in 
a tie group.

If there are no ties in a variable, then T = 0.
Use Formula 7.5 to determine the degrees of freedom for the correlation:

 df n= −2  (7.5)

where n is the number of paired values.
After rs is determined, it must be examined for significance. Small samples 

allow one to reference a table of critical values, such as Table B.7 found in Appendix 
B. However, if the sample size n exceeds those available from the table, then a large 
sample approximation may be performed. For large samples, compute a z-score and 
use a table with the normal distribution (see Table B.1 in Appendix B) to obtain a 
critical region of z-scores. Formula 7.6 may be used to find the z-score of a correla-
tion coefficient for large samples:

 z r n* = −



1  (7.6)

where n is the number of paired values and r is the correlation coefficient.
Note that the method for determining a z-score given a correlation coefficient 

and examining it for significance is the same for each type of correlation. We will 
illustrate a large sample approximation with a sample problem when we address the 
point-biserial correlation.

Although we will use Formula 7.6 to determine the significance of the correla-
tion coefficient, some statisticians recommend using the formula based on the Stu-
dent’s t-distribution, as shown in Formula 7.7:



142  CHAPTER 7  COMPARING VARIABLES OF ORDINAL OR DICHOTOMOUS SCALES

 t r
n

r
s

s

=
−

−
2

1 2
 (7.7)

According to Siegel and Castellan (1988), the advantage of using the Student’s 
t-distribution over the z-score is small with larger sample sizes n.

7.4.1 Sample Spearman Rank-Order Correlation (Small Data 
Samples without Ties)

Eight men were involved in a study to examine the resting heart rate regarding fre-
quency of visits to the gym. The assumption is that the person who visits the gym 
more frequently for a workout will have a slower heart rate. Table 7.2 shows the 
number of visits each participant made to the gym during the month the study was 
conducted. It also provides the mean heart rate measured at the end of the week 
during the final 3 weeks of the month.

TABLE 7.2

Participant Number of visits Mean heart rate

1 5 100

2 12 89

3 7 78

4 14 66

5 2 77

6 8 103

7 15 67

8 17 63

The values in this study do not possess characteristics of a strong interval scale. 
For instance, the number of visits to the gym does not necessarily communicate 
duration and intensity of physical activity. In addition, heart rate has several factors 
that can result in differences from one person to another. Ordinal measures offer a 
clearer relationship to compare these values from one individual to the next. There-
fore, we will convert these values to ranks and use a Spearman rank-order correlation.

7.4.1.1  State the Null and Research Hypothesis  The null hypothesis states 
that there is no correlation between number of visits to the gym in a month and mean 
resting heart rate. The research hypothesis states that there is a correlation between 
the number of visits to the gym and the mean resting heart rate.

The null hypothesis is

HO: ρs = 0

The research hypothesis is

HA: ρs ≠ 0
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7.4.1.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

7.4.1.3  Choose the Appropriate Test Statistic  As stated earlier, we decided 
to analyze the variables using an ordinal, or rank, procedure. Therefore, we will 
convert the values in each variable to ordinal data. In addition, we will be comparing 
the two variables, the number of visits to the gym in a month and the mean resting 
heart rate. Since we are comparing two variables in which one or both are measured 
on an ordinal scale, we will use the Spearman rank-order correlation.

7.4.1.4  Compute  the  Test  Statistic  First, rank the scores for each variable 
separately as shown in Table 7.3. Rank them from the lowest score to the highest 
score to form an ordinal distribution for each variable.

TABLE 7.3

Participant

Original scores Ranked scores

Number of visits Mean heart rate Number of visits Mean heart rate

1 5 100 2 7

2 12 89 5 6

3 7 78 3 5

4 14 66 6 2

5 2 77 1 4

6 8 103 4 8

7 15 67 7 3

8 17 63 8 1

To calculate the Spearman rank-order correlation coefficient, we need to cal-
culate the differences between rank pairs and their subsequent squares where 
D = rank (mean heart rate) − rank (number of visits). It is helpful to organize the 
data to manage the summation in the formula (see Table 7.4).

Next, compute the Spearman rank-order correlation coefficient:
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7.4.1.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic  Table 
B.7 in Appendix B lists critical values for the Spearman rank-order correlation coef-
ficient. In this study, the critical value is found for n = 8 and df = 6. Since we are 
conducting a two-tailed test and α = 0.05, the critical value is 0.738. If the obtained 
value exceeds or is equal to the critical value, 0.738, we will reject the null hypoth-
esis. If the critical value exceeds the absolute value of the obtained value, we will 
not reject the null hypothesis.

7.4.1.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 0.738 and the obtained value is |rs| = 0.619. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value is greater than the obtained value, we 
must not reject the null hypothesis. Since the critical value exceeds the absolute 
value of the obtained value, we do not reject the null hypothesis.

7.4.1.7  Interpret the Results  We did not reject the null hypothesis, suggesting 
that there is no significant correlation between the number of visits the males made 
to the gym in a month and their mean resting heart rates.

7.4.1.8  Reporting the Results  The reporting of results for the Spearman rank-
order correlation should include such information as the number of participants (n), 
two variables that are being correlated, correlation coefficient (rs), degrees of freedom 
(df), and p-value’s relation to α.

For this example, eight men (n = 8) were observed for 1 month. Their number 
of visits to the gym was documented (variable 1) and their mean resting heart rate 
was recorded during the last 3 weeks of the month (variable 2). These data were put 
in ordinal form for purposes of the analysis. The Spearman rank-order correlation 
coefficient was not significant (rs(6) = −0.619, p > 0.05). Based on this data, we can 

TABLE 7.4

Ranked scores Rank differences

Number of visits Mean heart rate D D2

2 7 5 25

5 6 1 1

3 5 2 4

6 2 −4 16

1 4 3 9

4 8 4 16

7 3 −4 16

8 1 −7 49

∑ =Di
2 136
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state that there is no clear relationship between adult male resting heart rate and the 
frequency of visits to the gym.

7.4.2 Sample Spearman Rank-Order Correlation (Small Data 
Samples with Ties)

The researcher repeated the experiment in the previous example using females. Table 
7.5 shows the number of visits each participant made to the gym during the month 
of the study and their subsequent mean heart rates.

TABLE 7.5

Participant Number of visits Mean heart rate

1 5 96

2 12 63

3 7 78

4 14 66

5 3 79

6 8 95

7 15 67

8 12 64

9 2 99

10 16 62

11 12 65

12 7 76

13 17 61

As with the previous example, the values in this study do not possess charac-
teristics of a strong interval scale, so we will use ordinal measures. We will convert 
these values to ranks and use a Spearman rank-order correlation.

Steps 1–3 are the same as the previous example. Therefore, we will begin with 
step 4.

7.4.2.1  Compute the Test Statistic   First, rank the scores for each variable as 
shown in Table 7.6. Rank the scores from the lowest score to the highest score to 
form an ordinal distribution for each variable.

To calculate the Spearman rank-order correlation coefficient, we need to cal-
culate the differences between rank pairs and their subsequent squares where 
D = rank (mean heart rate) − rank (number of visits). It is helpful to organize the 
data to manage the summation in the formula (see Table 7.7).

Next, compute the Spearman rank-order correlation coefficient. Since there 
are ties present in the ranks, we will use formulas that account for the ties. First, use 
Formula 7.3 and Formula 7.4. For the number of visits, there are two groups of ties. 
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TABLE 7.6

Participant

Original scores Rank scores

Number of visits Mean heart rate Number of visits Mean heart rate

1 5 96 3 12

2 12 63 8 3

3 7 78 4.5 9

4 14 66 10 6

5 3 79 2 10

6 8 95 6 11

7 15 67 11 7

8 12 64 8 4

9 2 99 1 13

10 16 62 12 2

11 12 65 8 5

12 7 76 4.5 8

13 17 61 13 1

TABLE 7.7

Participant

Rank scores Rank differences

Number of visits Mean heart rate D D2

1 3 12 9 81

2 8 3 −5 25

3 4.5 9 4.5 20.25

4 10 6 −4 16

5 2 10 8 64

6 6 11 5 25

7 11 7 −4 16

8 8 4 −4 16

9 1 13 12 144

10 12 2 −10 100

11 8 5 −3 9

12 4.5 8 3.5 12.25

13 13 1 −12 144

∑ =Di
2 672 5.
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The first group has two tied values (rank = 4.5 and t = 2) and the second group has 
three tied values (rank = 8 and t = 3):
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For the mean resting heart rate, there are no ties. Therefore, Ty = 0. Now, calculate 
the Spearman rank-order correlation coefficient using Formula 7.2:
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7.4.2.2  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic  Table 
B.7 in Appendix B lists critical values for the Spearman rank-order correlation coef-
ficient. To be significant, the absolute value of the obtained value, |rs|, must be greater 
than or equal to the critical value on the table. In this study, the critical value is 
found for n  =  13 and df  =  11. Since we are conducting a two-tailed test and 
α = 0.05, the critical value is 0.560.

7.4.2.3  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 0.560 and the obtained value is |rs| = 0.860. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value is greater than the obtained value, we 
must not reject the null hypothesis. Since the critical value is less than the absolute 
value of the obtained value, we reject the null hypothesis.

7.4.2.4  Interpret the Results  We rejected the null hypothesis, suggesting that 
there is a significant correlation between the number of visits the females made to 
the gym in a month and their mean resting heart rates.

7.4.2.5  Reporting the Results  The reporting of results for the Spearman rank-
order correlation should include such information as the number of participants (n), 
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two variables that are being correlated, correlation coefficient (rs), degrees of freedom 
(df), and p-value’s relation to α.

For this example, 13 women (n  =  13) were observed for 1 month. Their 
number of visits to the gym was documented (variable 1) and their mean resting 
heart rate was recorded during the last 3 weeks of the month (variable 2). These data 
were put in ordinal form for purposes of the analysis. The Spearman rank-order 
correlation coefficient was significant (rs(11) = −0.860, p < 0.05). Based on this data, 
we can state that there is a very strong inverse relationship between adult female 
resting heart rate and the frequency of visits to the gym.

7.4.3 Performing the Spearman Rank-Order Correlation 
Using SPSS

We will analyze the data from the previous example using SPSS.

7.4.3.1  Define  Your  Variables  First, click the “Variable View” tab at the 
bottom of your screen. Then, type the names of your variables in the “Name” 
column. As shown in Figure 7.1, the first variable is called “Number_of_Visits” and 
the second variable is called “Mean_Heart_Rate.”

FIGURE 7.1

FIGURE 7.2

7.4.3.2  Type in Your Values  Click the “Data View” tab at the bottom of your 
screen as shown in Figure 7.2. Type the values in the respective columns.
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7.4.3.3  Analyze Your Data  As shown in Figure 7.3, use the pull-down menus 
to choose “Analyze,” “Correlate,” and “Bivariate. . . .”

Use the arrow button to place both variables with your data values in the box 
labeled “Variables:” as shown in Figure 7.4. Then, in the “Correlation Coefficients” 
box, uncheck “Pearson” and check “Spearman.” Finally, click “OK” to perform the 
analysis.

FIGURE 7.3

FIGURE 7.4
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7.4.3.4  Interpret the Results from the SPSS Output Window  The output 
table (see SPSS Output 7.1) provides the Spearman rank-order correlation coefficient 
(rs = −0.860) labeled Spearman’s rho. It also returns the number of pairs (n = 13) 
and the two-tailed significance (p ≈ 0.000). In this example, the significance is not 
actually zero. The reported value does not return enough digits to show the signifi-
cance’s actual precision.

SPSS OUTPUT 7.1

Based on the results from SPSS, the Spearman rank-order correlation coeffi-
cient was significant (rs(11) = −0.860, p < 0.05). Based on these data, we can state 
that there is a very strong inverse relationship between adult female resting heart 
rate and the frequency of visits to the gym.

7.5 COMPUTING THE POINT-BISERIAL AND BISERIAL 
CORRELATION COEFFICIENTS

The point-biserial and biserial correlations are statistical procedures for use with 
dichotomous variables. A dichotomous variable is simply a measure of two condi-
tions. A dichotomous variable is either discrete or continuous. A discrete dichoto-
mous variable has no particular order and might include such examples as gender 
(male vs. female) or a coin toss (heads vs. tails). A continuous dichotomous variable 
has some type of order to the two conditions and might include measurements such 
as pass/fail or young/old. Finally, since the point-biserial and biserial correlations 
each involves an interval scale analysis, they are special cases of the Pearson 
product-moment correlation.

7.5.1 Correlation of a Dichotomous Variable and an Interval 
Scale Variable

The point-biserial correlation is a statistical procedure to measure the relationship 
between a discrete dichotomous variable and an interval scale variable. Use Formula 
7.8 to determine the point-biserial correlation coefficient rpb:
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where xp is the mean of the interval variable’s values associated with the dichoto-
mous variable’s first category, xq is the mean of the interval variable’s values associ-
ated with the dichotomous variable’s second category, s is the standard deviation of 
the variable on the interval scale, Pp is the proportion of the interval variable values 
associated with the dichotomous variable’s first category, and Pq is the proportion 
of the interval variable values associated with the dichotomous variable’s second 
category.

Recall the formulas for mean (Formula 7.9) and standard deviation (Formula 7.10):
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where ∑xj is the sum of the values in the sample and n is the number of values in 
the sample.

The biserial correlation is a statistical procedure to measure the relationship 
between a continuous dichotomous variable and an interval scale variable. Use 
Formula 7.11 to determine the biserial correlation coefficient rb:
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where xp is the mean of the interval variable’s values associated with the dichoto-
mous variable’s first category, xq is the mean of the interval variable’s values associ-
ated with the dichotomous variable’s second category, sx is the standard deviation of 
the variable on the interval scale, Pp is the proportion of the interval variable values 
associated with the dichotomous variable’s first category, Pq is the proportion of the 
interval variable values associated with the dichotomous variable’s second category, 
and y is the height of the unit normal curve ordinate at the point dividing Pp and Pq 
(see Fig. 7.5).

You may use Table B.1 in Appendix B or Formula 7.12 to find the height of 
the unit normal curve ordinate, y:

FIGURE 7.5
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where e is the natural log base and approximately equal to 2.718282 and z is the 
z-score at the point dividing Pp and Pq.

Formula 7.13 is the relationship between the point-biserial and the biserial 
correlation coefficients. This formula is necessary to find the biserial correlation 
coefficient because SPSS only determines the point-biserial correlation coefficient:

 r r
P P

y
b bp

p q=  (7.13)

After the correlation coefficient is determined, it must be examined for significance. 
Small samples allow one to reference a table of critical values, such as Table B.8 
found in Appendix B. However, if the sample size n exceeds those available from 
the table, then a large sample approximation may be performed. For large samples, 
compute a z-score and use a table with the normal distribution (see Table B.1 in 
Appendix B) to obtain a critical region of z-scores. As described earlier in this 
chapter, Formula 7.6 may be used to find the z-score of a correlation coefficient for 
large samples.

7.5.2 Correlation of a Dichotomous Variable and  
a Rank-Order Variable

As explained earlier, the point-biserial and biserial correlation procedures earlier 
involve a dichotomous variable and an interval scale variable. If the correlation was 
a dichotomous variable and a rank-order variable, a slightly different approach is needed.

To find the point-biserial correlation coefficient for a discrete dichotomous 
variable and a rank-order variable, simply use the Spearman rank-order described 
earlier and assign arbitrary values to the dichotomous variable such as 0 and 1. To 
find the biserial correlation coefficient for a continuous dichotomous variable and a 
rank-order variable, use the same procedure and then apply Formula 7.13 given 
earlier.

7.5.3 Sample Point-Biserial Correlation (Small Data Samples)

A researcher in a psychological lab investigated gender differences. She wished to 
compare male and female ability to recognize and remember visual details. She used 
17 participants (8 males and 9 females) who were initially unaware of the actual 
experiment. First, she placed each one of them alone in a room with various objects 
and asked them to wait. After 10 min, she asked each of the participants to complete 
a 30 question posttest relating to several details in the room. Table 7.8 shows the 
participants’ genders and posttest scores.

The researcher wishes to determine if a relationship exists between the two 
variables and the relative strength of the relationship. Gender is a discrete dichotomous 
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variable and visual detail recognition is an interval scale variable. Therefore, we will 
use a point-biserial correlation.

7.5.3.1  State the Null and Research Hypothesis  The null hypothesis states 
that there is no correlation between gender and visual detail recognition. The research 
hypothesis states that there is a correlation between gender and visual detail 
recognition.

The null hypothesis is

HO: ρpb = 0

The research hypothesis is

HA: ρpb ≠ 0

7.5.3.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

7.5.3.3  Choose the Appropriate Test Statistic  As stated earlier, we decided 
to analyze the relationship between the two variables. A correlation will provide the 
relative strength of the relationship between the two variables. Gender is a discrete 
dichotomous variable and visual detail recognition is an interval scale variable. 
Therefore, we will use a point-biserial correlation.

TABLE 7.8

Participant Gender Posttest score

1 M 7

2 M 19

3 M 8

4 M 10

5 M 7

6 M 15

7 M 6

8 M 13

9 F 14

10 F 11

11 F 18

12 F 23

13 F 17

14 F 20

15 F 14

16 F 24

17 F 22
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7.5.3.4  Compute the Test Statistic  First, compute the standard deviation of 
all values from the interval scale data. It is helpful to organize the data as shown in 
Table 7.9.

TABLE 7.9

Participant Gender Posttest score x xi − x xi −( )2

1 M 7 −7.59 57.58

2 M 19 4.41 19.46

3 M 8 −6.59 43.40

4 M 10 −4.59 21.05

5 M 7 −7.59 57.58

6 M 15 0.41 0.17

7 M 6 −8.59 73.76

8 M 13 −1.59 2.52

9 F 14 −0.59 0.35

10 F 11 −3.59 12.88

11 F 18 3.41 11.64

12 F 23 8.41 70.76

13 F 17 2.41 5.82

14 F 20 5.41 29.29

15 F 14 −0.59 0.35

16 F 24 9.41 88.58

17 F 22 7.41 54.93

∑ =xi 248 ∑ −( ) =x xi
2 550 12.

Using the summations from Table 7.9, calculate the mean and the standard 
deviation for the interval data:

 x x ni= ∑ ÷

 x = ÷248 17

 x =14 59.

 s
x x

n
x

i
=

−

−
=

−
=∑( ) .

.
2

1

550 12

17 1
34 38

 sx = 5 86.

Next, compute the means and proportions of the values associated with each item 
from the dichotomous variable. The mean males’ posttest score was

 
x x n

x

p p M

p

= ∑ ÷

= + + + + + + +( )÷

=

7 19 8 10 7 15 6 13 8

10 63.
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The mean females’ posttest score was

 

x x n

x

q q F

q

= ∑ ÷

= + + + + + + + +( )÷

=

14 11 18 23 17 20 14 24 22 9

18 11.

The males’ proportion was

 

P n n

P

p M

p

= ÷

= ÷
=

8 17

0 47.

The females’ proportion was

 

P n n

P

q F

q

= ÷

= ÷
=

9 17

0 53.

Now, compute the point-biserial correlation coefficient using the values computed 
earlier:

 

r
x x

s
P Ppb

p q

x
p q=

−

=
−

=
−

=

10 63 18 11

5 86
0 47 0 53

7 49

5 86
0 25

. .

.
( . )( . )

.

.
. (( . )( . )

.

−

= −

1 28 0 50

0 637rpb

The sign on the correlation coefficient is dependent on the order we managed our 
dichotomous variable. Since that was arbitrary, the sign is irrelevant. Therefore, we 
use the absolute value of the point-biserial correlation coefficient:

 rpb = 0 637.

7.5.3.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic  Table 
B.8 in Appendix B lists critical values for the Pearson product-moment correlation 
coefficient. Using the critical values, table requires that the degrees of freedom be 
known. Since df = n − 2 and n = 17, then df = 17 − 2. Therefore, df = 15. Since 
we are conducting a two-tailed test and α = 0.05, the critical value is 0.482.

7.5.3.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 0.482 and the obtained value is |rpb| = 0.637. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value is greater than the obtained value, we 
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must not reject the null hypothesis. Since the critical value is less than the absolute 
value of the obtained value, we reject the null hypothesis.

7.5.3.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
there is a significant and moderately strong correlation between gender and visual 
detail recognition.

7.5.3.8  Reporting the Results  The reporting of results for the point-biserial 
correlation should include such information as the number of participants (n), two 
variables that are being correlated, correlation coefficient (rpb), degrees of freedom 
(df), p-value’s relation to α, and the mean values of each dichotomous variable.

For this example, a researcher compared male and female ability to recognize 
and remember visual details. Eight males (nM = 8) and nine females (nF = 9) par-
ticipated in the experiment. The researcher measured participants’ visual detail 
recognition with a 30 question test requiring participants to recall details in a room 
they had occupied. A point-biserial correlation produced significant results 
(rpb(15)  =  0.637, p  <  0.05). These data suggest that there is a strong relationship 
between gender and visual detail recognition. Moreover, the mean scores on the 
detail recognition test indicate that males (xM =10 63. ) recalled fewer details, while 
females (xF =18 11. ) recalled more details.

7.5.4 Performing the Point-Biserial Correlation Using SPSS

We will analyze the data from the previous example using SPSS.

7.5.4.1  Define Your Variables  First, click the “Variable View” tab at the bottom 
of your screen. Then, type the names of your variables in the “Name” column. As 
shown in Figure 7.6, the first variable is called “Gender” and the second variable is 
called “Posttest_Score.”

FIGURE 7.6

7.5.4.2  Type in Your Values  Click the “Data View” tab at the bottom of your 
screen as shown in Figure 7.7. Type in the values in the respective columns. Gender 
is a discrete dichotomous variable and SPSS needs a code to reference the values. 
We code male values with 0 and female values with 1. Any two values can be chosen 
for coding the data.
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FIGURE 7.7

FIGURE 7.8

7.5.4.3  Analyze Your Data  As shown in Figure 7.8, use the pull-down menus 
to choose “Analyze,” “Correlate,” and “Bivariate. . . .”

Use the arrow button near the middle of the window to place both variables 
with your data values in the box labeled “Variables:” as shown in Figure 7.9. In the 
“Correlation Coefficients” box, “Pearson” should remain checked since the Pearson 
product-moment correlation will perform an approximate point-biserial correlation. 
Finally, click “OK” to perform the analysis.



158  CHAPTER 7  COMPARING VARIABLES OF ORDINAL OR DICHOTOMOUS SCALES

7.5.4.4  Interpret the Results from the SPSS Output Window  The output 
table (see SPSS Output 7.2) provides the Pearson product-moment correlation coef-
ficient (r = 0.657). This correlation coefficient is approximately equal to the point-
biserial correlation coefficient. It also returns the number of pairs (n = 17) and the 
two-tailed significance (p = 0.004).

FIGURE 7.9

SPSS OUTPUT 7.2

Based on the results from SPSS, the point-biserial correlation coefficient was 
significant (rpb(15) = 0.657, p < 0.05). Based on these data, we can state that there 
is a strong relationship between gender and visual detail recognition (as measured 
by the posttest).
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TABLE 7.10

Participant Gender Posttest score

1 M 6

2 M 15

3 M 8

4 M 10

5 M 6

6 M 12

7 M 7

8 M 13

9 M 13

10 M 10

11 M 18

12 M 23

13 M 17

14 M 20

15 F 14

16 F 26

17 F 14

18 F 11

19 F 29

20 F 20

21 F 15

22 F 18

23 F 9

24 F 14

25 F 21

26 F 22

7.5.5 Sample Point-Biserial Correlation (Large Data Samples)

A colleague of the researcher from the previous example wished to replicate the 
study investigating gender differences. As before, he compared male and female 
ability to recognize and remember visual details. He used 26 participants (14 males 
and 12 females) who were initially unaware of the actual experiment. Table 7.10 
shows the participants’ genders and posttest scores.

We will once again use a point-biserial correlation. However, we will use a 
large sample approximation to examine the results for significance since the sample 
size is large.

7.5.5.1  State the Null and Research Hypothesis  The null hypothesis states 
that there is no correlation between gender and visual detail recognition. The research 
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hypothesis states that there is a correlation between gender and visual detail 
recognition.

The null hypothesis is

HO: ρpb = 0

The research hypothesis is

HA: ρpb ≠ 0

7.5.5.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

7.5.5.3  Choose the Appropriate Test Statistic  As stated earlier, we decided 
to analyze the relationship between the two variables. A correlation will provide the 
relative strength of the relationship between the two variables. Gender is a discrete 
dichotomous variable and visual detail recognition is an interval scale variable. 
Therefore, we will use a point-biserial correlation.

7.5.5.4  Compute the Test Statistic  First, compute the standard deviation of 
all values from the interval scale data. Organize the data to manage the summations 
(see Table 7.11):

 x x ni= ∑ ÷

 x = ÷391 26

 x =15 04.

 s
x x

n
x

i
=

−

−
=

−
=∑( ) .

.
2

1

934 96

26 1
37 40

 Sx = 6 115.

Next, compute the means and proportions of the values associated with each item 
from the dichotomous variable. The mean males’ posttest score was

 

x x n

x

p p M

p

= ∑ ÷

= + + + + + + + + + + + + +( )÷

=

6 15 8 10 6 12 7 13 13 10 18 23 17 20 14

12.771

The mean females’ posttest score was

 

x x n

x

q q F

q

= ∑ ÷

= + + + + + + + + + + +( )÷

=

14 26 14 11 29 2 15 18 9 14 21 220 12

17 75.

The males’ proportion was
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P n n

P

p M

p

= ÷

= ÷
=

14 26

0 54.

The females’ proportion was

 

P n n

P

q F

q

= ÷

= ÷
=

12 26

0 46.

Now, compute the point-biserial correlation coefficient using the values computed 
earlier:

TABLE 7.11

Participant Gender Posttest score x xi − x xi −( )2

1 M 6 −9.04 81.69

2 M 15 −0.04 0.00

3 M 8 −7.04 49.54

4 M 10 −5.04 25.39

5 M 6 −9.04 81.69

6 M 12 −3.04 9.23

7 M 7 −8.04 64.62

8 M 13 −2.04 4.16

9 M 13 −2.04 4.16

10 M 10 −5.04 25.39

11 M 18 2.96 8.77

12 M 23 7.96 63.39

13 M 17 1.96 3.85

14 M 20 4.96 24.62

15 F 14 −1.04 1.08

16 F 26 10.96 120.16

17 F 14 −1.04 1.08

18 F 11 −4.04 16.31

19 F 29 13.96 194.92

20 F 20 4.96 24.62

21 F 15 0.04 0.00

22 F 18 2.96 8.77

23 F 9 −6.04 36.46

24 F 14 −1.04 1.08

25 F 21 5.96 35.54

26 F 22 6.96 48.46

∑ =xi 391 ∑ −( ) =x xi
2 934 96.
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The sign on the correlation coefficient is dependent on the order we managed our 
dichotomous variable. Since that was arbitrary, the sign is irrelevant. Therefore, we 
use the absolute value of the point-biserial correlation coefficient:

 rpb = 0 411.

Since our number of values is large, we will use a large sample approximation to 
examine the obtained value for significance. We will find a z-score for our data using 
an approximation to the normal distribution:

 z r npb* = −



1

 z* .= −



0 411 26 1

 z* .= 2 055

7.5.5.5  Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic  Table B.1 in Appendix B is used to establish the critical region of z-scores. 
For a two-tailed test with α  =  0.05, we must not reject the null hypothesis if 
−1.96 ≤ z* ≤ 1.96.

7.5.5.6  Compare the Obtained Value with the Critical Value  Notice that 
z* is in the positive tail of the distribution (2.055 > 1.96). Therefore, we reject the 
null hypothesis. This suggests that the correlation between gender and visual detail 
recognition is real.

7.5.5.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
there is a significant and moderately weak correlation between gender and visual 
detail recognition.

7.5.5.8  Reporting the Results  The reporting of results for the point-biserial 
correlation should include such information as the number of participants (n), 
two variables that are being correlated, correlation coefficient (rpb), degrees of 
freedom (df), p-value’s relation to α, and the mean values of each dichotomous 
variable.

For this example, a researcher replicated a study that compared male and 
female ability to recognize and remember visual details. Fourteen males (nM = 14) 
and 12 females (nF = 12) participated in the experiment. The researcher measured 
participants’ visual detail recognition with a 30 question test requiring participants 
to recall details in a room they had occupied. A point-biserial correlation produced 



7.5 COMPUTING THE POINT-BISERIAL AND BISERIAL CORRELATION COEFFICIENTS  163

significant results (rpb(24) = 0.411, p < 0.05). These data suggest that there is a mod-
erate relationship between gender and visual detail recognition. Moreover, the mean 
scores on the detail recognition test indicate that males (xM =12 71. ) recalled fewer 
details, while females (xF =17 75. ) recalled more details.

7.5.6 Sample Biserial Correlation (Small Data Samples)

A graduate anthropology department at a university wished to determine if its stu-
dents’ grade point averages (GPAs) can be used to predict performance on the 
department’s comprehensive exam required for graduation. The comprehensive 
exam is graded on a pass/fail basis. Sixteen students participated in the comprehen-
sive exam last year. Five of the students failed the exam. The GPAs and the exam 
performance of the students are displayed in Table 7.12.

TABLE 7.12

Participant Exam performance GPA

1 F 3.5

2 F 3.4

3 F 3.3

4 F 3.2

5 F 3.6

6 P 4.0

7 P 3.6

8 P 4.0

9 P 4.0

10 P 3.8

11 P 3.9

12 P 3.9

13 P 4.0

14 P 3.8

15 P 3.5

16 P 3.6

Exam performance is a continuous dichotomous variable and GPA is an inter-
val scale variable. Therefore, we will use a biserial correlation.

7.5.6.1  State the Null and Research Hypothesis  The null hypothesis states 
that there is no correlation between student GPA and comprehensive exam perfor-
mance. The research hypothesis states that there is a correlation between student 
GPA and comprehensive exam performance.

The null hypothesis is

HO: ρb = 0
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The research hypothesis is

HA: ρb ≠ 0

7.5.6.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

7.5.6.3  Choose the Appropriate Test Statistic  As stated earlier, we decided 
to analyze the relationship between the two variables. A correlation will provide the 
relative strength of the relationship between the two variables. Exam performance 
is a continuous dichotomous variable and GPA is an interval scale variable. There-
fore, we will use a biserial correlation.

7.5.6.4  Compute the Test Statistic  First, compute the standard deviation of 
all values from the interval scale data. Organize the data to manage the summations 
(see Table 7.13):

 x x ni= ∑ ÷

 x = ÷59 1 16.

TABLE 7.13

Participant Exam performance GPA x xi − x xi −( )2

1 F 3.5 −0.19 0.04

2 F 3.4 −0.29 0.09

3 F 3.3 −0.39 0.16

4 F 3.2 −0.49 0.24

5 F 3.6 −0.09 0.01

6 P 4.0 0.31 0.09

7 P 3.6 −0.09 0.01

8 P 4.0 0.31 0.09

9 P 4.0 0.31 0.09

10 P 3.8 0.11 0.01

11 P 3.9 0.21 0.04

12 P 3.9 0.21 0.04

13 P 4.0 0.31 0.09

14 P 3.8 0.11 0.01

15 P 3.5 −0.19 0.04

16 P 3.6 −0.09 0.01

∑ =xi 59 1. ∑ −( ) =x xi
2 1 07.
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 x = 3 69.
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16 1
0 071

 sx = 0 267.

Next, compute the means and proportions of the values associated with each item 
from the dichotomous variable. The mean GPA of the exam failures was

 

x x n

x

p p F

p
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= + + + +( )÷

=

3 5 3 4 3 3 3 2 3 6 5

3 4

. . . . .

.

The mean GPA of the ones who passed the exam was

 

x x nq q P= ∑ ÷

= + + + + + + + + + +( )÷4 3 6 4 4 3 8 3 9 3 9 4 3 8 3 5 3 6. . . . . . . . . . .0 0 0 0 11

xxq = 3 8.

The proportion of exam failures was

 

P n n

P

p F

p

= ÷

= ÷
=

5 16

0 3125.

The proportion of the ones who passed the exam was

 

P n n

P

q P

q

= ÷

= ÷
=

11 16

0 6875.

Now, determine the height of the unit normal curve ordinate, y, at the point dividing 
Pp and Pq. We could reference the table of values for the normal distribution, such 
as Table B.1 in Appendix B, to find y. However, we will compute the value. Using 
Table B.1 also provides the z-score at the point dividing Pp and Pq, z = 0.49:

 y e z= −1

2

2 2

π

 = = =− −1

2

1

2 51
0 40 0 890 49 2 0 122

π
e e. .

.
( . )( . )

 y = 0 3538.

Now, compute the biserial correlation coefficient using the values computed earlier:
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The sign on the correlation coefficient is dependent on the order we managed our 
dichotomous variable. A quick inspection of the variable means indicates that the 
GPA of the failures was smaller than the GPA of the ones who passed. Therefore, 
we should convert the biserial correlation coefficient to a positive value:

 rb = 0 972.

7.5.6.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using  the  Appropriate  Table  of  Critical  Values  for  the  Particular  Statis-
tic  Table B.8 in Appendix B lists critical values for the Pearson product-moment 
correlation coefficient. The table requires the degrees of freedom and df = n − 2. 
In this study, n = 16 and df = 16 − 2. Therefore, df = 14. Since we are conducting 
a two-tailed test and α = 0.05, the critical value is 0.497.

7.5.6.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 0.497 and the obtained value is |rb| = 0.972. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value is greater than the obtained value, we 
must not reject the null hypothesis. Since the critical value is less than the absolute 
value of the obtained value, we reject the null hypothesis.

7.5.6.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
there is a significant and very strong correlation between student GPA and compre-
hensive exam performance.

7.5.6.8  Reporting the Results  The reporting of results for the biserial correla-
tion should include such information as the number of participants (n), two variables 
that are being correlated, correlation coefficient (rb), degrees of freedom (df), 
p-value’s relation to α, and the mean values of each dichotomous variable.

For this example, a researcher compared the GPAs of graduate anthropology 
students who passed their comprehensive exam with students who failed the exam. 
Five students failed the exam (nF  =  5) and 11 students passed it (nP  =  11). The 
researcher compared student GPA and comprehensive exam performance. A biserial 
correlation produced significant results (rb(14) = 0.972, p < 0.05). The data suggest 
that there is an especially strong relationship between student GPA and comprehen-
sive exam performance. Moreover, the mean GPA of the failing students (xfailure = 3 4. ) 
and passing students (xpassing = 3 8. ) indicates that the relationship is a direct 
correlation.
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7.5.7 Performing the Biserial Correlation Using SPSS

SPSS does not compute the biserial correlation coefficient. To do so, Field (2005) 
has suggested using SPSS to perform a Pearson product-moment correlation (as 
described earlier) and then applying Formula 7.13. However, this procedure will 
only produce an approximation of the biserial correlation coefficient and we recom-
mend you use a spreadsheet with the procedure we described for the sample biserial 
correlation.

7.6 EXAMPLES FROM THE LITERATURE

Listed are varied examples of the nonparametric procedures described in this chapter. 
We have summarized each study’s research problem and researchers’ rationale(s) 
for choosing a nonparametric approach. We encourage you to obtain these studies 
if you are interested in their results.

Greiner and Smith (2006) investigated factors that might affect teacher reten-
tion. When they examined the relationship between the Texas state-mandated teacher 
certification examination and teacher retention, they used a point-biserial correlation. 
The researchers used the point biserial since teacher retention was measured as a 
discrete dichotomous variable.

Blumberg and Sokol (2004) examined gender differences in the cognitive 
strategies that 2nd- and 5th-grade children use when they learn how to play a video 
game. In part of the study, participants were classified as frequent players or infrequent 
players. That classification was correlated with game performance. Since player fre-
quency was a discrete dichotomy, the researchers chose a point-biserial correlation.

McMillian et al. (2006) investigated the attitudes of female registered nurses 
toward male registered nurses. The researchers performed several analyses with a 
variety of statistical tests. In one analysis, they used a Spearman rank-order correla-
tion to examine the relationship between town population and the participants’ 
responses on an attitude inventory. The attitude inventory was a modified instrument 
to measure level of sexist attitude. Participants indicated agreement or disagreement 
with statements using a four-point Likert scale. The Spearman rank-order correlation 
was chosen because the attitude inventory resembled an ordinal scale.

Fitzgerald et al (2007) examined the validity of an instrument designed to 
measure the performance of physical therapy interns. They used a correlation analy-
sis to examine the relationship between two measures of clinical competence. Since one 
of the measures was ordinal, the researchers used a Spearman rank-order correlation.

Flannelly et al. (2005) reviewed the research literature of studies that investi-
gated the effects of religion on adolescent tobacco use. The authors used a biserial 
correlation to compare studies’ effect (no effect vs. effect) with sample size.

7.7 SUMMARY

The relationship between two variables can be compared with a correlation analysis. 
If any of the variables are ordinal or dichotomous, a nonparametric correlation is 
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useful. The Spearman rank-order correlation, also called the Spearman’s ρ, is used 
to compare the relationship involving ordinal, or rank-ordered, variables. The point-
biserial and biserial correlations are used to compare the relationship between two 
variables if one of the variables is dichotomous. The parametric equivalent to these 
correlations is the Pearson product-moment correlation.

In this chapter, we described how to perform and interpret a Spearman rank-
order, point-biserial, and biserial correlations. We also explained how to perform  
the procedures using SPSS. Finally, we offered varied examples of these nonpara-
metric statistics from the literature. The next chapter will involve comparing nominal 
scale data.

7.8 PRACTICE QUESTIONS

1. The business department at a small college wanted to compare the relative class 
rank of its MBA graduates with their fifth-year salaries. The data collected by 
the department are presented in Table 7.14. Compare the graduates’ class rank 
with their fifth-year salaries.

TABLE 7.14

Relative class rank Fifth-year salary ($)

1 83,450

2 67,900

3 89,000

4 80,500

5 91,000

6 55,440

7 101,300

8 50,560

9 76,050

Use a two-tailed Spearman rank-order correlation with α = 0.05 to deter-
mine if a relationship exists between the two variables. Report your findings.

2. A researcher was contracted by the military to assess soldiers’ perception of a 
new training program’s effectiveness. Fifteen soldiers participated in the program. 
The researcher used a survey to measure the soldiers’ perceptions of the pro-
gram’s effectiveness. The survey used a Likert-type scale that ranged from 
5 = strongly agree to 1 = strongly disagree. Using the data presented in Table 
7.15, compare the soldiers’ average survey scores with the total number of years 
the soldiers had been serving.

Use a two-tailed Spearman rank-order correlation with α = 0.05 to deter-
mine if a relationship exists between the two variables. Report your findings.
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3. A middle school history teacher wished to determine if there is a connection 
between gender and history knowledge among 8th-grade gifted students. The 
teacher administered a 50 item test at the beginning of the school year to 16 gifted 
8th-grade students. The scores from the test are presented in Table 7.16.

Use a two-tailed point-biserial correlation with α = 0.05 to determine if a 
relationship exists between the two variables. Report your findings.

TABLE 7.15

Average survey score Years of service

4.0 18

4.0 15

2.4 2

4.2 13

3.4 4

4.0 10

5.0 24

1.8 4

3.2 9

2.5 5

2.5 3

3.0 8

3.6 16

4.6 14

4.8 12

TABLE 7.16

Participant Gender Posttest score

1 M 44

2 M 30

3 M 50

4 M 33

5 M 37

6 M 35

7 M 36

8 F 29

9 F 39

10 F 33

11 F 50

12 F 45

13 F 37

14 F 30

15 F 34

16 F 50



170  CHAPTER 7  COMPARING VARIABLES OF ORDINAL OR DICHOTOMOUS SCALES

TABLE 7.17

Participant Poverty level Survey score

1 Above 15

2 Above 19

3 Above 15

4 Above 20

5 Above 7

6 Above 12

7 Above 3

8 Above 15

9 Below 9

10 Below 5

11 Below 13

12 Below 13

13 Below 11

14 Below 10

15 Below 8

16 Below 9

17 Below 10

18 Below 17

4. A researcher wished to determine if there is a connection between poverty and 
self-esteem. Income level was used to classify 18 participants as either below 
poverty or above poverty. Participants completed a 20 item survey to measure 
self-esteem. The scores from the survey are reported in Table 7.17.

Use a two-tailed biserial correlation with α = 0.05 to determine if a rela-
tionship exists between the two variables. Report your findings.

7.9 SOLUTIONS TO PRACTICE QUESTIONS

1. The results from the analysis are displayed in SPSS Output 7.3.
The results from the Spearman rank-order correlation (rs = −0.217, p > 0.05) 
did not produce significant results. Based on these data, we can state that there 
is no clear relationship between graduates’ relative class rank and fifth-year salary.

2. The results from the analysis are displayed in SPSS Output 7.4.
The results from the Spearman rank-order correlation (rs  =  0.806, p  <  0.05) 
produced significant results. Based on these data, we can state that there is a very 
strong correlation between soldiers’ survey scores concerning the new program’s 
effectiveness and their total years of military service.

3. The results from the point-biserial correlation (rpb =  0.047, p >  0.05) did not 
produce significant results. Based on these data, we can state that there is no clear 
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relationship between 8th-grade gifted students’ gender and their score on the 
history knowledge test administered by the teacher.

Note that the results obtained from using SPSS is rpb = 0.049, p > 0.05.

4. The results from the biserial correlation (rb = 0.372, p > 0.05) did not produce 
significant results. Based on these data, we can state that there is no clear relation-
ship between poverty level and self-esteem.

SPSS OUTPUT 7.3

SPSS OUTPUT 7.4
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CHAPTER 8
TESTS FOR NOMINAL SCALE 
DATA: CHI-SQUARE AND FISHER 
EXACT TESTS

8.1 OBJECTIVES

In this chapter, you will learn the following items:

•	 How to perform a chi-square goodness-of-fit test.

•	 How to perform a chi-square goodness-of-fit test using SPSS®.

•	 How to perform a chi-square test for independence.

•	 How to perform a chi-square test for independence using SPSS.

•	 How to perform the Fisher exact test.

•	 How to perform Fisher exact test using SPSS.

8.2 INTRODUCTION

Sometimes, data are best collected or conveyed nominally or categorically. These 
data are represented by counting the number of times a particular event or condition 
occurs. In such cases, you may be seeking to determine if a given set of counts, or 
frequencies, statistically matches some known, or expected, set. Or, you may wish 
to determine if two or more categories are statistically independent. In either case, 
we can use a nonparametric procedure to analyze nominal data.

In this chapter, we present three procedures for examining nominal data: chi-
square (χ2) goodness of fit, χ2-test for independence, and the Fisher exact test. We 
will also explain how to perform the procedures using SPSS. Finally, we offer varied 
examples of these nonparametric statistics from the literature.

8.3 THE χ2 GOODNESS-OF-FIT TEST

Some situations in research involve investigations and questions about relative  
frequencies and proportions for a distribution. Some examples might include a 
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comparison of the number of women pediatricians with the number of men pediatri-
cians, a search for significant changes in the proportion of students entering a writing 
contest over 5 years, or an analysis of customer preference of three candy bar choices. 
Each of these examples asks a question about a proportion in the population.

When comparing proportions, we are not measuring a numerical score for each 
individual. Instead, we classify each individual into a category. We then find out 
what proportion of the population is classified into each category. The χ2 goodness-
of-fit test is designed to answer this type of question.

The χ2 goodness-of-fit test uses sample data to test the hypothesis about the 
proportions of the population distribution. The test determines how well the sample 
proportions fit the proportions specified in the null hypothesis.

8.3.1 Computing the χ2 Goodness-of-Fit Test Statistic

The χ2 goodness-of-fit test is used to determine how well the obtained sample pro-
portions or frequencies for a distribution fit the population proportions or frequencies 
specified in the null hypothesis. The χ2 statistic can be used when two or more 
categories are involved in the comparison. Formula 8.1 is referred to as Pearson’s 
χ2 and is used to determine the χ2 statistic:

 χ2
2

=
−( )∑ f f

f
o e

e

 (8.1)

where fo is the observed frequency (the data) and fe is the expected frequency (the 
hypothesis).

Use Formula 8.2 to determine the expected frequency fe:

 f Pne i=  (8.2)

where Pi is a category’s frequency proportion with respect to the other categories 
and n is the sample size of all categories and Σf no = .

Use Formula 8.3 to determine the degrees of freedom for the χ2-test:

 df C= −1  (8.3)

where C is the number of categories.

8.3.2 Sample χ2 Goodness-of-Fit Test (Category 
Frequencies Equal)

A marketing firm is conducting a study to determine if there is a significant prefer-
ence for a type of chicken that is served as a fast food. The target group is college 
students. It is assumed that there is no preference when the study is started. The 
types of food that are being compared are chicken sandwich, chicken strips, chicken 
nuggets, and chicken taco.

The sample size for this study was n = 60. The data in Table 8.1 represent the 
observed frequencies for the 60 participants who were surveyed at the fast food 
restaurants.



174 CHAPTER 8 TESTS FOR NOmINAl SCAlE DATA: CHI-SQUARE AND FISHER ExACT TESTS

We want to determine if there is any preference for one of the four chicken fast 
foods that were purchased to eat by the college students. Since the data only need to be 
classified into categories, and no sample mean nor sum of squares needs to be cal-
culated, the χ2 statistic goodness-of-fit test can be used to test the nonparametric data.

8.3.2.1  State the Null and Research Hypotheses  The null hypothesis states 
that there is no preference among the different categories. There is an equal propor-
tion or frequency of participants selecting each type of fast food that uses chicken. 
The research hypothesis states that one or more of the chicken fast foods is preferred 
over the others by the college student.

The null hypothesis is

HO: In the population of college students, there is no preference of one chicken 
fast food over any other. Thus, the four fast food types are selected equally 
often and the population distribution has the proportions shown in Table 8.2.

TABLE 8.1

Chicken sandwich Chicken strips Chicken nuggets Chicken taco

10 25 18 7

TABLE 8.2

Chicken sandwich Chicken strips Chicken nuggets Chicken taco

25% 25% 25% 25%

HA: In the population of college students, there is at least one chicken fast food 
preferred over the others.

8.3.2.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

8.3.2.3  Choose the Appropriate Test Statistic  The data are obtained from 
60 college students who eat fast food chicken. Each student was asked which of the 
four chicken types of food he or she purchased to eat and the result was tallied under 
the corresponding category type. The final data consisted of frequencies for each of 
the four types of chicken fast foods. These categorical data, which are represented 
by frequencies or proportions, are analyzed using the χ2 goodness-of-fit test.

8.3.2.4  Compute  the Test  Statistic  First, tally the observed frequencies, fo, 
for the 60 students who were in the study. Use these data to create the observed 
frequency table shown in Table 8.3.
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Next, calculate the expected frequency for each category. In this case, the 
expected frequency, fe, will be the same for all four categories since our research 
problem assumes that all categories are equal:
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Table 8.4 presents the expected frequencies for each category.

TABLE 8.3

Chicken sandwich Chicken strips Chicken nuggets Chicken taco

Observed frequencies 10 25 18 7

TABLE 8.4

Chicken sandwich Chicken strips Chicken nuggets Chicken taco

Expected frequencies 15 15 15 15

Using the values for the observed and expected frequencies, the χ2 statistic 
may be calculated:
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8.3.2.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic 
Before we go to the table of critical values, we must determine the degrees of 
freedom, df. In this example, there are four categories, C = 4. To find the degrees 
of freedom, use df = C − 1 = 4 − 1. Therefore, df = 3.

Now, we use Table B.2 in Appendix B, which lists the critical values for the 
χ2. The critical value is found in the χ2 table for three degrees of freedom, df = 3. 
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Since we set the α = 0.05, the critical value is 7.81. A calculated value that is greater 
than or equal to 7.81 will lead us to reject the null hypothesis.

8.3.2.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 7.81 and the obtained value is χ2 = 13.21. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value exceeds the obtained value, we do not 
reject the null hypothesis. Since the critical value is less than our obtained value, we 
must reject the null hypothesis.

Note that the critical value for α = 0.01 is 11.34. Since the obtained value is 
13.21, a value greater than 11.34, the data indicate that the results are highly 
significant.

8.3.2.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
there is a real difference among chicken fast food choices preferred by college stu-
dents. In particular, the data show that a larger portion of the students preferred the 
chicken strips and only a few of them preferred the chicken taco.

8.3.2.8  Reporting the Results  The reporting of results for the χ2 goodness of 
fit should include such information as the total number of participants in the sample 
and the number that were classified in each category. In some cases, bar graphs are 
good methods of presenting the data. In addition, include the χ2 statistic, degrees of 
freedom, and p-value’s relation to α. For this study, the number of students who ate 
each type of chicken fast food should be noted either in a table or plotted on a bar 
graph. The probability, p < 0.01, should also be indicated with the data to show the 
degree of significance of the χ2.

For this example, 60 college students were surveyed to determine which fast 
food type of chicken they purchased to eat. The four choices were chicken sandwich, 
chicken strips, chicken nuggets, and chicken taco. Student choices were 10, 25,  
18, and 7, respectively. The χ2 goodness-of-fit test was significant (χ( ) .3

2 13 21= , 
p  <  0.01). Based on these results, a larger portion of the students preferred the 
chicken strips while only a few students preferred the chicken taco.

8.3.3 Sample χ2 Goodness-of-Fit Test (Category Frequencies 
Not Equal)

Sometimes, research is being conducted in an area where there is a basis for different 
expected frequencies in each category. In this case, the null hypothesis will indicate 
different frequencies for each of the categories according to the expected values. 
These values are usually obtained from previous data that were collected in similar 
studies.

In this study, a school system uses three different physical fitness programs 
because of scheduling requirements. A researcher is studying the effect of the pro-
grams on 10th-grade students’ 1-mile run performance. Three different physical 
fitness programs were used by the school system and will be described later.
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•	 Program 1. Delivers health and physical education in 9-week segments 
with an alternating rotation of nine straight weeks of health education and 
then nine straight weeks of physical education.

•	 Program 2. Delivers health and physical education everyday with 30 min 
for health, 10  min for dress-out time, and 50  min of actual physical 
activity

•	 Program 3. Delivers health and physical education in 1-week segments 
with an alternating rotation of 1 week of health education and then 1 week 
of physical education

Using students who participated in all three programs, the researcher is comparing 
these programs based on student performances on the 1-mile run. The researcher 
recorded the program in which each student received the most benefit. Two hundred 
fifty students had participated in all three programs. The results for all of the students 
are recorded in Table 8.5.

TABLE 8.5

Program 1 Program 2 Program 3

110 55 85

TABLE 8.6

Program 1 Program 2 Program 3

32% 22% 45%

We want to determine if the frequency distribution in the case earlier is dif-
ferent from previous studies. Since the data only need to be classified into categories, 
and no sample mean or sum of squares needs to be calculated, the χ2 goodness-of-fit 
test can be used to test the nonparametric data.

8.3.3.1  State the Null and Research Hypotheses  The null hypothesis states 
the proportion of students who benefited most from one of the three programs based 
on a previous study. As shown in Table 8.6, there are unequal expected frequencies 
for the null hypothesis. The research hypothesis states that there is at least one of 
the three categories that will have a different proportion or frequency than those 
identified in the null hypothesis.

The null hypothesis is

HO: The proportions do not differ from the previously determined proportions 
shown in Table 8.6.

HA: The population distribution has a different shape than that specified in the 
null hypothesis.
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8.3.3.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

8.3.3.3  Choose the Appropriate Test Statistic  The data are being obtained from 
the 1-mile run performance of 250 10th-grade students who participated in a school 
system’s three health and physical education programs. Each student was catego-
rized based on the plan in which he or she benefited most. The final data consisted 
of frequencies for each of the three plans. These categorical data which are repre-
sented by frequencies or proportions are analyzed using the χ2 goodness-of-fit test.

8.3.3.4  Compute  the Test Statistic  First, tally the observed frequencies for 
the 250 students who were in the study. This was performed by the researcher. Use 
the data to create the observed frequency table shown in Table 8.7.

TABLE 8.7

Program 1 Program 2 Program 3

Observed frequencies 110 55 85

Next, calculate the expected frequencies for each category. In this case, the 
expected frequency will be different for each category. Each one will be based on 
proportions stated in the null hypothesis:

 f Pnei i=

 fe for program 1 0 32 250 80= =. ( )

 fe for program 2 0 22 250 55= =. ( )

 fe for program 3 0 46 250 115= =. ( )

Table 8.8 presents the expected frequencies for each category.
Use the values for the observed and expected frequencies calculated earlier to 

calculate the χ2 statistic:
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8.3.3.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic 
Before we go to the table of critical values, we must determine the degrees of 
freedom, df. In this example, there are four categories, C = 3. To find the degrees 
of freedom, use df = C − 1 = 3 − 1. Therefore, df = 2.

Now, we use Table B.2 in Appendix B, which lists the critical values for the 
χ2. The critical value is found in the χ2 table for two degrees of freedom, df = 2. 
Since we set α = 0.05, the critical value is 5.99. A calculated value that is greater 
than 5.99 will lead us to reject the null hypothesis.

8.3.3.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 5.99 and the obtained value is χ2 = 19.08. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value exceeds the obtained value, we do not 
reject the null hypothesis. Since the critical value is less than our obtained value, we 
must reject the null hypothesis.

Note that the critical value for α = 0.01 is 9.21. Since the obtained value is 
19.08, which is greater than the critical value, the data indicate that the results are 
highly significant.

8.3.3.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
there is a real difference in how the health and physical education program affects 
the performance of students on the 1-mile run as compared with the existing research. 
By comparing the expected frequencies of the past study and those obtained in the 
current study, it can be noted that the results from program 2 did not change. Program 
2 was least effective in both cases, with no difference between the two. Program 1 
became more effective and program 3 became less effective.

8.3.3.8  Reporting the Results  The reporting of results for the χ2 goodness-
of-fit should include such information as the total number of participants in the 
sample, the number that were classified in each category, and the expected frequen-
cies that are being used for comparison. It is important also to cite a source for the 
expected frequencies so that the decisions made from the study can be supported. 
In addition, include the χ2 statistic, degrees of freedom, and p-value’s relation to α. 
It is often a good idea to present a bar graph to display the observed and expected 
frequencies from the study. For this study, the probability, p < 0.01, should also be 
indicated with the data to show the degree of significance of the χ2.

For this example, 250 10th-grade students participated in three different health 
and physical education programs. Using 1-mile run performance, students’ program 

TABLE 8.8

Program 1 Program 2 Program 3

Expected frequencies 80 55 115
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of greatest benefit was compared with the results from past research. The χ2 
goodness-of-fit test was significant (χ( ) .2

2 19 08= , p < 0.01). Based on these results, 
program 2 was least effective in both cases, with no difference between the two. 
Program 1 became more effective and program 3 became less effective.

8.3.4 Performing the χ2 Goodness-of-Fit Test Using SPSS

We will analyze the data from the example earlier using SPSS.

8.3.4.1  Define  Your  Variables  First, click the “Variable View” tab at the 
bottom of your screen (see Fig. 8.1). The χ2 goodness-of-fit test requires two vari-
ables: one variable to identify the categories and a second variable to identify the 
observed frequencies. Type the names of these variables in the “Name” column. In 
our example, we define the variables as “Program” and “count.”

FIGURE 8.1

You must assign values to serve as a reference for each category in the 
observed frequency variable. It is often easiest to assign each category a whole 
number value. As shown in Figure 8.2, our categories are “Program 1,” “Program 
2,” and “Program 3.” First, we selected the “count” variable and clicked the gray 
square in the “Values” field. Then, we set a value of 1 to equal “Program 1,” a value 
of 2 to equal “Program 2,” and a value of 3 to equal “Program 3.” We use the “Add” 
button to move the variable labels to the box below. Repeat this procedure for the 
“Program” variable so that the output tables will display these labels.

8.3.4.2  Type in Your Values  Click the “Data View” tab at the bottom of your 
screen. First, enter the data for each category using the whole numbers you assigned 
to represent the categories. As shown in Figure 8.3, we entered the values “1,” “2,” 
and “3” in the “Program” variable. Second, enter the observed frequencies next to 
the corresponding category values. In our example, we entered the observed frequen-
cies “110,” “55,” and “85.”

8.3.4.3  Analyze Your Data  First, use the “Weight Cases” command to allow 
the observed frequency variable to reference the category variable. As shown in 
Figure 8.4, use the pull-down menus to choose “Data” and “Weight Cases . . .”.

The default setting is “Do not weight cases.” Click the circle next to “Weight 
cases by” as shown in Figure 8.5. Select the variable with the observed frequencies. 
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FIGURE 8.2

FIGURE 8.3

Move that variable to the “Frequency Variable:” box by clicking the small arrow 
button. In our example, we have moved the “count” variable. Finally, click “OK.”

As shown in Figure 8.6, use the pull-down menus to choose “Analyze,” “Non-
parametric Tests,” “Legacy Dialogs,” and “Chi-square. . .”.

First, move the category variable to the “Test Variable List:” box by select-
ing that variable and clicking the small arrow button near the center of  
the window. As shown in Figure 8.7, we have chosen the “Program” variable. 
Then, enter your “Expected Values.” Notice that the option “All categories equal” 
is the default setting. Since this example does not have equal categories, we  
must select the “Values:” option to set the expected values. Enter the expected 
frequencies for each category in the order that they are listed in the SPSS Data 
View. After you type in an expected frequency in the “Values:” field, click “Add.”  
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FIGURE 8.5

FIGURE 8.4



FIGURE 8.6

FIGURE 8.7



184 CHAPTER 8 TESTS FOR NOmINAl SCAlE DATA: CHI-SQUARE AND FISHER ExACT TESTS

For our example, we have entered 80, 55, and 115, respectively. Finally, click “OK” 
to perform the analysis.

8.3.4.4  Interpret  the  Results  from  the  SPSS  Output  Window  The first 
output table (see SPSS Output 8.1a) provides the observed and expected frequencies 
for each category and the total count.

SPSS OUTPUT 8.1A

SPSS OUTPUT 8.1B

The second output table (see SPSS Output 8.1b) provides the χ2 statistic 
(χ2 = 19.076), the degrees of freedom (df = 2), and the significance (p ≈ 0.000).

Based on the results from SPSS, three programs were compared with unequal 
expected frequencies. The χ2 goodness-of-fit test was significant (χ( ) .2

2 19 08= , 
p < 0.01). Based on these results, program 2 was least effective in both cases, with 
no difference between the two. Program 1 became more effective and program 3 
became less effective.

8.4 THE χ2 TEST FOR INDEPENDENCE

Some research involves investigations of frequencies of statistical associations of 
two categorical attributes. Examples might include a sample of men and women who 
bought a pair of shoes or a shirt. The first attribute, A, is the gender of the shopper 
with two possible categories:

 men = A1

 women = A2
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The second attribute, B, is the clothing type purchased by each individual:

 pair of shoes = B1

 shirt = B2

We will assume that each person purchased only one item, either a pair of shoes or 
a shirt. The entire set of data is then arranged into a joint-frequency distribution 
table. Each individual is classified into one category which is identified by a pair of 
categorical attributes (see Table 8.9).

TABLE 8.9

A1 A2

B1 (A1, B1) (A2, B1)

B2 (A1, B2) (A2, B2)

The χ2-test for independence uses sample data to test the hypothesis that there 
is no statistical association between two categories. In this case, whether there is a 
significant association between the gender of the purchaser and the type of clothing 
purchased. The test determines how well the sample proportions fit the proportions 
specified in the null hypothesis.

8.4.1 Computing the χ2 Test for Independence

The χ2-test for independence is used to determine whether there is a statistical asso-
ciation between two categorical attributes. The χ2 statistic can be used when two or 
more categories are involved for two attributes. Formula 8.4 is referred to as Pear-
son’s χ2 and is used to determine the χ2 statistic:

 χ2
2

=
−∑∑ ( )f f

f
ojk ejk

ejkkj

 (8.4)

where fojk is the observed frequency for cell AjBk and fejk is the expected frequency 
for cell AjBk.

In tests for independence, the expected frequency fejk in any cell is found by 
multiplying the row total times the column total and dividing the product by the 
grand total N. Use Formula 8.5 to determine the expected frequency fejk:

 f
A B

N
ejk

j k=
( . )( . )freq freq

 (8.5)

The degrees of freedom df for the χ2 is found using Formula 8.6:

 df R C= − −( )( )1 1  (8.6)

where R is the number of rows and C is the number of columns.
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It is important to note that Pearson’s χ2 formula returns a value that is too 
small when data form a 2 × 2 contingency table. This increases the chance of a type 
I error. In such a circumstance, one might use the Yates’s continuity correction shown 
in Formula 8.7:

 χ2
20 5

=
− −∑∑ ( . )f f

f
ojk ejk

ejkkj

 (8.7)

Daniel (1990) has cited a number of criticisms to the Yates’s continuity correction. 
While he recognizes that the procedure has been frequently used, he also observes 
a decline in its popularity. Toward the end of this chapter, we present an alternative 
for analyzing a 2 × 2 contingency table using the Fisher exact test.

At this point, the analysis is limited to identifying an association’s presence 
or absence. In other words, the χ2-test’s level of significance does not describe the 
strength of its association. We can use the effect size to analyze the degree of asso-
ciation. For the χ2-test for independence, the effect size between the nominal vari-
ables of a 2 × 2 contingency table can be calculated and represented with the phi 
(φ) coefficient (see Formula 8.8):

 φ
χ

=
2

n
 (8.8)

where χ2 is the chi-square test statistic and n is the number in the entire sample.
The φ coefficient ranges from 0 to 1. Cohen (1988) defined the conventions 

for effect size as small = 0.10, medium = 0.30, and large = 0.50. (Correlation coef-
ficient and effect size are both measures of association. See Chapter 7 concerning 
correlation for more information on Cohen’s assignment of effect size’s relative 
strength.)

When the χ2 contingency table is larger than 2 × 2, Cramer’s V statistic may 
be used to express effect size. The formula for Cramer’s V is shown in Formula 8.9:

 V
n L

=
−
χ2

1( )( )
 (8.9)

where χ2 is the chi-square test statistic, n is the total number in the sample, and L 
is the minimum value of the row totals and column totals from the contingency table.

8.4.2 Sample χ2 Test for Independence

A counseling department for a school system is conducting a study to investigate 
the association between children’s attendance in public and private preschool and 
their behavior in the kindergarten classroom. It is the researcher’s desire to see if 
there is any positive association between early exposure to learning and behavior in 
the classroom.

The sample size for this study was n = 100. The following data in Table 8.10 
represent the observed frequencies for the 100 children whose behavior was observed 
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during their first 6 weeks of school. The students who were in the study were identi-
fied by the type of preschool educational exposure they received.

We want to determine if there is any association between type of preschool 
experience and behavior in kindergarten in the first 6 weeks of school. Since the 
data only need to be classified into categories, and no sample mean nor sum of 
squares needs to be calculated, the χ2 statistic for independence can be used to test 
the nonparametric data.

8.4.2.1  State the Null and Research Hypotheses  The null hypothesis states 
that there is no association between the two categories. The behavior of the children 
in kindergarten is independent of the type of preschool experience they had. The 
research hypothesis states that there is a significant association between the preschool 
experience of the children and their behavior in kindergarten.

The null hypothesis is

Ho: In the general population, there is no association between type of preschool 
experience a child has and the child’s behavior in kindergarten.

The research hypothesis states

HA: In the general population, there is a predictable relationship between the 
preschool experience and the child’s behavior in kindergarten.

8.4.2.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

8.4.2.3  Choose the Appropriate Test Statistic  The data are obtained from 
100 children in kindergarten who experienced differing preschool preparation prior 
to entering formal education. The kindergarten teachers for the children were ask to 
rate students’ behaviors using three broad levels of ratings obtained from a survey. 
The students were then divided up into three groups according to preschool experi-
ence (no preschool, private preschool, and public preschool). These data are orga-
nized into a two-dimensional categorical distribution that can be analyzed using an 
independent χ2-test.

TABLE 8.10

Behavior in kindergarten

Row totalsPoor Average Good

Public preschool 12 25 10 47

Private preschool 6 12 0 18

No preschool 2 23 10 35

Column totals 20 60 20 100
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8.4.2.4  Compute the Test Statistic  First, tally the observed frequencies fojk for 
the 100 students who were in the study. Use these data to create the observed fre-
quency table shown in Table 8.11.

TABLE 8.11

Behavior in kindergarten (observed)

Row totalsPoor Average Good

Public preschool 12 25 10 47

Private preschool 6 12 0 18

No preschool 2 23 10 35

Column totals 20 60 20 100

TABLE 8.12

Behavior in kindergarten (expected)

Row totalsPoor Average Good

Public preschool 9.4 28.2 9.4 47

Private preschool 3.6 10.8 3.6 18

No preschool 7.0 21.0 7.0 35

Column totals 20 60 20 100

Next, calculate the expected frequency fejk for each category:

 fe11
47 20

100
940 100 9 4= = =

( )( )
./

 fe12
47 60

100
2820 100 28 2= = =

( )( )
./

 fe13
47 20
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( )( )
./
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360 100 3 6= = =

( )( )
./
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./
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( )( )
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 fe32
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( )( )
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100
700 100 7 0= = =

( )( )
./

Place these values in an expected frequency table (see Table 8.12).
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Using the values for the observed and expected frequencies in Tables 8.11 and 
8.12, the χ2 statistic can be calculated:
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8.4.2.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic 
Before we go to the table of critical values, we need to determine the degrees of 
freedom, df. In this example, there are three categories in the preschool experience 
dimension, R = 3, and three categories in the behavior dimension, C = 3. To find 
the degrees of freedom, use df  =  (R −  1)(C  −  1)  =  (3 −  1)(3  −  1). Therefore, 
df = 4.

Now, we use Table B.2 in Appendix B, which lists the critical values for the 
χ2. The critical value is found in the χ2 table for four degrees of freedom, df = 4. 
Since we set α = 0.05, the critical value is 9.49. A calculated value that is greater 
than or equal to 9.49 will lead us to reject the null hypothesis.

8.4.2.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is 9.49 and the obtained value is χ2 = 11.50. 
If the critical value is less than or equal to the obtained value, we must reject the 
null hypothesis. If instead, the critical value exceeds the obtained value, we do not 
reject the null hypothesis. Since the critical value is less than our obtained value, we 
must reject the null hypothesis.

8.4.2.7  Interpret the Results  We rejected the null hypothesis, suggesting that 
there is a real association between type of preschool experience children obtained 
and their behavior in the kindergarten classroom during their first few weeks in 
school. In particular, data tend to show that children who have private schooling do 
not tend to get good behavior ratings in school. The other area that tends to show 
some significant association is between poor behavior and no preschool experience. 
The students who had no preschool had very few poor behavior ratings in compari-
son with the other two groups.
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At this point, the analysis is limited to identifying an association’s presence 
or absence. In other words, the χ2-test’s level of significance does not describe the 
strength of its association. The American Psychological Association (2001), however, 
has called for a measure of the degree of association called the effect size. For the 
χ2-test for independence with a 3 × 3 contingency table, we determine the strength 
of association, or the effect size, using Cramer’s V.

From Table 8.11, we find that L = 3. For n = 100 and χ2 = 11.50, we use 
Formula 8.9 to determine V:
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Our effect size, Cramer’s V, is 0.24. This value indicates a medium level of associa-
tion between type of preschool experience children obtained and their behavior in 
the kindergarten classroom during their first few weeks in school.

8.4.2.8  Reporting  the  Results  The reporting of results for the χ2-test for 
independence should include such information as the total number of participants in 
the sample and the number of participants classified in each of the categories. In 
addition, include the χ2 statistic, degrees of freedom, and the p-value’s relation to 
α. For this study, the number of children who were in each category (including 
preschool experience and behavior rating) should be presented in the two-dimensional 
table (see Table 8.10).

For this example, the records of 100 kindergarten students were examined to 
determine whether there was an association between preschool experience and 
behavior in kindergarten. The three preschool experiences were no preschool, private 
preschool, and public preschool. The three behavior ratings were poor, average, and 
good. The χ2-test was significant (χ( ) .4

2 11 50= , p < 0.05). Moreover, our effect size, 
using Cramer’s V, was 0.24. Based on the results, there was a tendency shown for 
students with private preschool to not have good behavior and those with no pre-
school to not have poor behavior. It also indicated that average behavior was strong 
for all three preschool experiences.

8.4.3 Performing the χ2 Test for Independence Using SPSS

We will analyze the data from the example earlier using SPSS.

8.4.3.1  Define  Your  Variables  First, click the “Variable View” tab at the 
bottom of your screen, as shown in Figure 8.8. The χ2-test for independence requires 
variables to identify the conditions in the rows: one variable to identify the condi-
tions of the rows and a second variable to identify the conditions of the columns. 
According to the previous example, the “Behavior” variable will represent the 
columns. “School_Type” will represent the rows. Finally, we need a variable to 
represent the observed frequencies. “Frequency” represents the observed frequencies.
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You must assign values to serve as a reference for the column and row vari-
ables. It is often easiest to assign each category a whole number value. First, click 
the gray square in the “Values” field to set the desired values. As shown in Figure 
8.9, we have already assigned the value labels for the “Behavior” variable. For the 
“School_Type” variable, we set a value of 1 to equal “Public Preschool,” a value of 
2 to equal “Private Preschool,” and a value of 3 to equal “No Preschool.” Clicking 
the “Add” button moves each of the value labels to the list below. Finally, click “OK” 
to return to the SPSS Variable View screen.

8.4.3.2  Type in Your Values  Click the “Data View” tab at the bottom of your 
screen, as shown in Figure 8.10. Use the whole number references you set earlier 

FIGURE 8.8

FIGURE 8.9
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for the row and column variables. Each possible combination of conditions should 
exist. Then, enter the corresponding observed frequencies. In our example, row 1 
represents a “Behavior” of 1 which is “Poor” and a “School_Type” of 1 which is 
“Public School.” The observed frequency for this condition is 12.

8.4.3.3  Analyze Your Data  First, use the “Weight Cases” command to allow 
the observed frequency variable to reference the category variable. As shown in 
Figure 8.11, use the pull-down menus to choose “Data” and “Weight Cases . . .”.

The default setting is “Do not weight cases.” Click the circle next to “Weight 
cases by” as shown in Figure 8.12. Select the variable with the observed frequencies. 
Move that variable to the “Frequency Variable:” box by clicking the small arrow 
button. In our example, we have moved the “Frequency” variable. Finally, click “OK.”

As shown in Figure 8.13, use the pull-down menus to choose “Analyze,” 
“Descriptive Statistics,” and “Crosstabs . . .”.

When the Crosstabs window is open, move the variable that represents the 
rows to the “Row(s):” box by selecting that variable and clicking the small arrow 
button next to that box. As shown in Figure 8.14, we have chosen the “School_Type” 
variable. Then, move the variable that represents the column to the “Column(s):” 
box. In our example, we have chosen the “Behavior” variable. Next, click the “Sta-
tistics . . .” button.

As shown in Figure 8.15, check the box next to “Chi-square” and the box next 
to “Phi and Cramer’s V.” Once those boxes are checked, click “Continue” to return 
to the Crosstabs window. Now, click the “Cells . . .” button.

As shown in Figure 8.16, check the boxes next to “Observed” and “Expected.” 
Then, click “Continue” to return to the Crosstabs window. Finally, click “OK” to 
perform the analysis.

8.4.3.4  Interpret  the  Results  from  the  SPSS  Output  Window  The 
second to fourth output tables from SPSS are of interest in this procedure.  

FIGURE 8.10
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FIGURE 8.11

FIGURE 8.12
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FIGURE 8.13

FIGURE 8.14

The second output table (see SPSS Output 8.2a) provides the observed and expected 
frequencies for each category and the total counts.

The third output table (see SPSS Output 8.2b) provides the χ2 statistic 
(χ2 = 11.502), the degrees of freedom (df = 4), and the significance (p = 0.021).

The fourth output table (see SPSS Output 8.2c) provides the Cramer’s V sta-
tistic (V = 0.240) to determine the level of association or effect size.
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FIGURE 8.15

FIGURE 8.16
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Based on the results from SPSS, three programs were compared with unequal 
expected frequencies. The χ2 goodness-of-fit test was significant (χ( ) .4

2 11 502= , 
p < 0.05). Based on these results, there is a real association between type of pre-
school experience children obtained and their behavior in the kindergarten classroom 
during their first few weeks in school. In addition, the measured effect size presented 
a medium level of association (V = 0.240).

8.5 THE FISHER EXACT TEST

A special case arises if a contingency table’s size is 2 × 2 and at least one expected 
cell count is less than 5. In this circumstance, SPSS will calculate a Fisher exact test 
instead of a χ2-test for independence.

SPSS OUTPUT 8.2A

SPSS OUTPUT 8.2B

SPSS OUTPUT 8.2C
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The Fisher exact test is useful for analyzing discrete data obtained from small, 
independent samples. They can be either nominal or ordinal. It is used when the 
scores of two independent random samples fall into one of two mutually exclusive 
classes or obtains one of two possible scores. The results form a 2 × 2 contingency 
table, as noted earlier.

In this chapter, we will describe how to perform and interpret the Fisher exact 
test for different samples.

8.5.1 Computing the Fisher Exact Test for 2 × 2 Tables

Compare the 2 × 2 contingency table’s one-sided significance with the level of risk, 
α. Table 8.13 is the 2 × 2 contingency table that is used as the basis for computing 
Fisher exact test’s one-sided significance.

TABLE 8.13

Variable

Group

CombinedI II

+ A B A + B

− C D C + D

Total A + C B + D N

The formula for computing the one-sided significance for the Fisher exact test 
is shown in Formula 8.10. Table B.9 in Appendix B lists the factorials for n = 0 to 
n = 15:

 p
A B C D A C B D

N A B C D
=

+ + + +( )!( )!( )!( )!

! ! ! ! !
 (8.10)

If all cell counts are equal to or larger than 5 (ni ≥ 5), Daniel (1990) suggested that 
one use a large sample approximation with the χ2-test instead of the Fisher exact test.

8.5.2 Sample Fisher Exact Test

A small medical center administered a survey to determine its nurses’ attitude of 
readiness to care for patients. The survey was a 15-item Likert scale with two points 
positive, two points negative, and a neutral point. The study was conducted to 
compare the feelings between men and women. Each person was classified according 
to a total attitude determined by summing the item values on the survey. A maximum 
positive attitude would be +33 and a maximum negative attitude would be −33.

Table 8.14 and Table 8.15 show the number of men and women who had posi-
tive and negative attitudes about how they were prepared. There were four men and 
six women. Three of the men had positive survey results and only one of the women 
had a positive survey result.
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We want to determine if there is a difference in attitude between men and 
women toward their preparation to care for patients. Since the data form a 2 × 2 
contingency table and at least one cell has an expected count (see Formula 8.2) 
of less than 5, the Fisher exact test is a useful procedure to analyze the data and 
test the hypothesis.

8.5.2.1  State the Null and Research Hypotheses  The null hypothesis states 
that there are no differences between men and women on the attitude survey that 
measures feelings about the program that teaches care for patients. The alternative 
hypothesis is that the proportion of men with positive attitudes, PM, exceed the pro-
portion of women with positive attitudes, PW.

The hypotheses can be written as follows.

HO: PM = PW

HA: PM > PW

8.5.2.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α) level, is frequently 

TABLE 8.14

Participant Gender Score Attitude

1 Male +30 +
2 Male +14 +
3 Male −21 −
4 Male +22 +
5 Male +9 +
6 Female −22 −
7 Female −13 −
8 Female −20 −
9 Female −7 −

10 Female +19 +
11 Female −31 −

TABLE 8.15

Group

Men Women

Positive 4 1 5

Negative 1 5 6

5 6 11
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set at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% 
chance that any observed statistical difference will be real and not due to chance.

8.5.2.3  Choose the Appropriate Test Statistic  The data are obtained from a 
2 × 2 contingency table. Two independent groups were measured on a survey and 
classified according to two criteria. The classifications were (+) for a positive atti-
tude and (−) for negative attitude. The samples are small, thus requiring nonpara-
metric statistics. We are analyzing data in a 2 × 2 contingency table and at least one 
cell has an expected count (see Formula 8.2) of less than 5. Therefore, we will use 
the Fisher exact test.

8.5.2.4  Compute  the  Test  Statistic  First, construct the 2  ×  2 contingency 
tables for the data in the study and for data that represent a more extreme occurrence 
than that which was obtained. In this example, there were five men and six women 
who were in the training program for nurses. Four of the men responded positively 
to the survey and only one of the women responded positively. The remainder of the 
people in the study responded negatively.

If we wish to test the null hypothesis statistically, we must consider the pos-
sibility of the occurrence of the more extreme outcome that is shown in Table 8.16b. 
In that table, none of the men responded negatively and none of the women responded 
positively.

To be shown later are the tables for the statistic. Table 8.16a show the results 
that occurred in the data collected and Table 8.16b shows the more extreme outcome 
that could occur.

To test the hypothesis, we first use Formula 8.10 to compute the probability 
of each possible outcome shown earlier.

TABLE 8.16A

Group

Men Women

Positive 4 1 5

Negative 1 5 6

5 6 11

TABLE 8.16B

Group

Men Women

Positive 5 0 5

Negative 0 6 6

5 6 11
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For Table 8.16a,
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For Table 8.16b,
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The probability is found by adding the two results that were computed earlier:
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8.5.2.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic 
In the example in this chapter, the probability was computed and compared with the 
level of risk specified earlier, α = 0.05. This computational process involves very 
large numbers and is aided by the table values. It is recommended that a table of 
critical values be used when possible.

8.5.2.6  Compare the Obtained Value with the Critical Value  The critical 
value for rejecting the null hypothesis is α  =  0.05 and the obtained p-value is 
p = 0.067. If the critical value is greater than the obtained value, we must reject the 
null hypothesis. If the critical value is less than the obtained value, we do not reject 
the null hypothesis. Since the critical value is less than the obtained value, we do 
not reject the null hypothesis.

8.5.2.7  Interpret the Results  We did not reject the null hypothesis, suggesting 
that no real difference existed between the attitudes of men and women about their 
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readiness to care for patients. There was, however, a strong trend toward positive 
feelings on the part of the men and negative feelings on the part of the women. The 
probability was small, although not significant. This is the type of study that would 
call for further investigation with other samples to see if this trend was more pro-
nounced. Our analysis does provide some evidence that there is some difference, 
and if analyzed with a more liberal critical value such as α = 0.10, this statistical 
test would show significance.

Since the Fisher exact test was not statistically significant (p > α), we may 
not have an interest in the strength of the association between the two variables. 
However, a researcher wishing to replicate the study may wish to know that strength 
of association.

The effect size is a measure of association between two variables. For the 
Fisher exact test, which has a 2 × 2 contingency table, we determine the effect size 
using the phi (φ) coefficient (see Formula 8.8). For n = 11 and χ2 = 4.412 (calcula-
tion for χ2 not shown), we use Formula 8.8 to determine φ:
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Our effect size, the phi (φ) coefficient, is 0.633. This value indicates a strong level 
of association between the two variables. What is more, a replication of the study 
may be worth the effort.

8.5.2.8  Reporting the Results  When reporting the findings, include the table 
that shows the actual reported frequencies, including all marginal frequencies. In 
addition, report the p-value and its relationship to the critical value.

For this example, Table 8.15 would be reported. The obtained significance, 
p = 0.067, was greater than the critical value, α = 0.05. Therefore, we did not reject 
the null hypothesis, suggesting that there was no difference between men and women 
on the attitude survey that measures feelings about the program that teaches care for 
patients.

8.5.3 Performing the Fisher Exact Test Using SPSS

As noted earlier, SPSS performs a Fisher exact test instead of a χ2-test for indepen-
dence if the contingency table’s size is 2 × 2 and at least one expected cell count is 
less than 5. In other words, to perform a Fisher exact test, use the same method you 
used for a χ2-test for independence.

SPSS Outputs 8.3a and 8.3b provide the SPSS output for the sample Fisher 
exact test computed earlier. Note that all four expected counts were less than 5. In 
addition, the one-sided significance is p = 0.067.

SPSS Output 8.3c provides the effect size for the association. Since the asso-
ciation was not statistically significant (p > α), the effect size (φ = 0.633) was not 
of interest to this study.
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8.6 EXAMPLES FROM THE LITERATURE

Listed are varied examples of the nonparametric procedures described in this chapter. 
We have summarized each study’s research problem and researchers’ rationale(s) 
for choosing a nonparametric approach. We encourage you to obtain these studies 
if you are interested in their results.

Duffy and Sedlacek (2007) examined the surveys of 3570 1st-year college 
students regarding the factors they deemed most important to their long-term career 
choice. χ2 analyses were used to assess work value differences (social, extrinsic, 
prestige, and intrinsic) in gender, parental income, race, and educational aspirations. 
The researchers used χ2-tests for independence since these data were frequencies of 
nominal items.

SPSS OUTPUT 8.3A

SPSS OUTPUT 8.3B

SPSS OUTPUT 8.3C
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Ferrari et al. (2006) studied the effects of leadership experience in an academic 
honor society on later employment and education. Drawing from honor society 
alumni, the researchers compared leaders with nonleaders on various aspects of their 
graduate education or employment. Since most data were frequencies of nominal 
items, the researchers used χ2-test for independence.

Helsen et al. (2006) analyzed the correctness of assistant referees’ offside 
judgments during the final round of the FIFA 2002 World Cup. Specifically, they 
use digital video technology to examine situations involving the viewing angle and 
special position of a moving object. They used a χ2 goodness-of-fit test to determine 
if the ratio of correct to incorrect decisions and the total number of offside decisions 
were uniformly distributed throughout six 15-min intervals. They also used a χ2 
goodness-of-fit test to determine if flag errors versus nonflag errors led to a judgment 
bias.

Shorten et al. (2005) analyzed a survey of 34 academic libraries in the United 
States and Canada that use the Dewey decimal classification (DDC). They wished 
to determine why these libraries continue using DDC and if they have considered 
reclassification. Some of the survey questions asked participants to respond to a 
reason by selecting “more important,” “less important,” or “not a reason at all.” 
Responses were analyzed with a χ2 goodness-of-fit test to examine responses for 
consensus among libraries.

Rimm-Kaufman and Zhang (2005) studied the communication between fathers 
of “at-risk” children with their preschool and kindergarten schools. Specifically, they 
examined frequency, characteristics, and predictors of communication based on 
family sociodemographic characteristics. When analyzing frequencies, they used 
χ2-tests. However, when cells contained frequencies of zero, they used a Fisher exact 
test.

Enander et al. (2007) investigated a newly employed inspection method 
for self-certification of environmental and health qualities in automotive refinish-
ing facilities. They focused on occupational health and safety, air pollution 
control, hazardous waste management, and wastewater discharge. A Fisher exact 
test was used to analyze 2  ×  2 tables with relatively small observed cell 
frequencies.

To examine the clinical problems of sexual abuse, Mansell et al. (1998) com-
pared children with developmental disabilities to children without developmental 
disabilities. Categorical data were analyzed with χ2-tests of independence; however, 
the Yates’ continuity corrections were used when cell counts exhibited less than the 
minimum expected count needed for the χ2-test.

8.7 SUMMARY

Nominal, or categorical, data sometimes need analyses. In such cases, you may be 
seeking to determine if the data statistically match some known or expected set of 
frequencies. Or, you may wish to determine if two or more categories are statistically 
independent. In either case, nominal data can be analyzed with a nonparametric 
procedure.
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In this chapter, we presented three procedures for examining nominal data: 
chi-square (χ2) goodness of fit, χ2-test for independence, and the Fisher exact 
test. We also explained how to perform the procedures using SPSS. Finally, we 
offered varied examples of these nonparametric statistics from the literature. In 
the next chapter, we will describe how to determine if a series of events occurred 
randomly.

8.8 PRACTICE QUESTIONS

1. A police department wishes to compare the average number of monthly robberies 
at four locations in their town. Use equal categories in order to identify one or 
more concentrations of robberies. The data are presented in Table 8.17.
Use a χ2 goodness-of-fit test with α  =  0.05 to determine if the robberies are 
concentrated in one or more of the locations. Report your findings.

TABLE 8.17

Average monthly robberies

Location 1 15

Location 2 10

Location 3 19

Location 4 16

TABLE 8.18

Race

Frequency of race from 
the researcher’s 

randomly drawn sample

Racial percentage of U.S. 
school children based on 

the 2001 U.S. Census (%)

White 57 72

Black 21 20

Asian, Hispanic, or Pacific Islander 14 8

2. The χ2 goodness-of-fit test serves as a useful tool to ensure that statistical samples 
approximately match the desired stratification proportions of the population from 
which they are drawn.

A researcher wishes to determine if her randomly drawn sample matches 
the racial stratification of school age children. She used the most recent U.S. 
Census data, which was from 2001. The racial composition of her sample and 
the 2001 U.S. Census proportions are displayed in Table 8.18.

Use a χ2 goodness-of-fit test with α = 0.05 to determine if the researcher’s 
sample matches the proportions reported by the U.S. Census. Report your 
findings.
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3. A researcher wishes to determine if there is an association between the level of 
a teacher’s education and his/her job satisfaction. He surveyed 158 teachers. The 
frequencies of the corresponding results are displayed in Table 8.19.

TABLE 8.19

Teacher education level (observed)

Row totalsBachelor’s degree Master’s degree Post-Master’s degree

Satisfied 60 41 19 120

Unsatisfied 10 13 15 38

Column totals 70 54 34 158

First, use a χ2-test for independence with α = 0.05 to determine if there is an 
association between level of education and job satisfaction. Then, determine the 
effect size for the association. Report your findings.

4. A professor gave her class a 10-item survey to determine the students’ satis-
faction with the course. Survey question responses were measured using a 
five-point Likert scale. The survey had a score range from +20 to −20. Table 
8.20 shows the scores of the students in a class of 13 students who rated the 
professor.

TABLE 8.20

Participant Gender Score Satisfaction

1 Male +12 +
2 Male +6 +
3 Male −5 −
4 Male −10 −
5 Male +17 +
6 Male +4 +
7 Female −2 −
8 Female −13 −
9 Female +10 +

10 Female −8 −
11 Female −11 −
12 Female −4 −
13 Female −14 −

Use a Fisher exact test with α  =  0.05 to determine if there is an association 
between gender and course satisfaction of the professor’s class. Then, determine 
the effect size for the association. Report your findings.



206 CHAPTER 8 TESTS FOR NOmINAl SCAlE DATA: CHI-SQUARE AND FISHER ExACT TESTS

According to the data, the results from the χ2 goodness-of-fit test were not sig-
nificant (χ( ) .3

2 2 800= , p >  0.05). Therefore, no particular location displayed a 
significantly higher or lower number of robberies.

2. The results from the analysis are displayed in SPSS Outputs 8.5a and 8.5b.

SPSS OUTPUT 8.4A

SPSS OUTPUT 8.4B

SPSS OUTPUT 8.5A

8.9 SOLUTIONS TO PRACTICE QUESTIONS

1. The results from the analysis are displayed in SPSS Outputs 8.4a and 8.4b.

According to the data, the results from the χ2 goodness-of-fit test were significant 
(χ( ) .2

2 7 647= , p  <  0.05). Therefore, the sample’s racial stratification approxi-
mately matches the U.S. Census racial composition of school aged children in 
2001.
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SPSS OUTPUT 8.5B

SPSS OUTPUT 8.6A

SPSS OUTPUT 8.6B

3. The results from the analysis are displayed in SPSS Outputs 8.6a–8.6c.

SPSS OUTPUT 8.6C
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SPSS OUTPUT 8.7A

SPSS OUTPUT 8.7B

As seen in SPSS Output 8.6a, none of the cells had an expected count of 
less than 5. Therefore, the χ2-test was indeed an appropriate analysis. Concerning 
effect size, the size of the contingency table was larger than 2 × 2. Therefore, a 
Cramer’s V was appropriate.

According to the data, the results from the χ2-test for independence were 
significant (χ( ) .2

2 11 150= , p < 0.05). Therefore, the analysis provides evidence 
that teacher education level differentiates between individuals based on job sat-
isfaction. In addition, the effect size (V  =  0.266) indicated a medium level of 
association between the variables.

4. The results from the analysis are displayed in SPSS Outputs 8.7a–8.7c.

SPSS OUTPUT 8.7C
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As seen in SPSS Output 8.7a, all of the cells had an expected count of less 
than 5. Therefore, the Fisher exact test was an appropriate analysis. Concerning 
effect size, the size of the contingency table was 2  ×  2. Therefore, a phi (φ) 
coefficient was appropriate.

According to the data, the results from the Fisher exact test were not sig-
nificant (p = 0.086) based on α = 0.05. Therefore, the analysis provides evidence 
that no association exists between gender and course satisfaction of the profes-
sor’s class. In addition, the effect size (φ = 0.537) was not of interest to this study 
due to the lack of significant association between variables.
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CHAPTER 9
TEST FOR RANDOMNESS: 
THE RUNS TEST

9.1 OBJECTIVES

In this chapter, you will learn the following items:

•	 How to use a runs test to analyze a series of events for randomness.

•	 How to perform a runs test using SPSS®.

9.2 INTRODUCTION

Every investor wishes he or she could predict the behavior of a stock’s performance. 
Is there a pattern to a stock’s gain/loss cycle or are the events random? One could 
make a defensible argument to that question with an analysis of randomness.

The runs test (sometimes called a Wald–Wolfowitz runs test) is a statistical 
procedure for examining a series of events for randomness. This nonparametric test 
has no parametric equivalent. In this chapter, we will describe how to perform and 
interpret a runs test for both small samples and large samples. We will also explain 
how to perform the procedure using SPSS. Finally, we offer varied examples of these 
nonparametric statistics from the literature.

9.3 THE RUNS TEST FOR RANDOMNESS

The runs test seeks to determine if a series of events occur randomly or are merely 
due to chance. To understand a run, consider a sequence represented by two symbols, 
A and B. One simple example might be several tosses of a coin where A = heads 
and B = tails. Another example might be whether an animal chooses to eat first or 
drink first. Use A = eat and B = drink.

The first steps are to list the events in sequential order and count the number 
of runs. A run is a sequence of the same event written one or more times. For example, 
compare two event sequences. The first sequence is written AAAAAABBBBBB.

210
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Then, separate the sequence into same groups as shown in Figure 9.1. There 
are two runs in this example, R  =  2. This is a trend pattern in which events are 
clustered and it does not represent random behavior.

FIGURE 9.1

FIGURE 9.2

A run can also describe how a sequence of events occurs in relation to a custom 
value. Use two symbols, such as A and B, to define whether an event exceeds or 
falls below the custom value. A simple example may reference the freezing point of 
water where A = temperatures above 0°C and B = temperatures below 0°C. In this 
example, simply list the events in order and determine the number of runs as 
described earlier.

After the number of runs is determined, it must be examined for significance. 
We may use a table of critical values (see Table B.10 in Appendix B). However, if 
the numbers of values in each sample, n1 or n2, exceed those available from the table, 
then a large sample approximation may be performed. For large samples, compute 
a z-score and use a table with the normal distribution (see Table B.1 in Appendix B) 
to obtain a critical region of z-scores. Formula 9.1, Fomula 9.2, Formula 9.3, Formula 
9.4, and Formula 9.5 are used to find the z-score of a runs test for large samples:
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where xR is the mean value of runs, n1 is the number of times the first event occurred, 
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where sR is the standard deviation of runs;
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R h x

s
R

R

* =
+ −

 (9.3)

where z* is the z-score for a normal approximation of the data, R is the number of 
runs, and h is the correction for continuity, ±0.5, 

Consider a second event sequence written ABABABABABAB. Again, separate 
the events into same groups (see Fig. 9.2) to determine the number of runs. There 
are 12 runs in this example, R = 12. This is a cyclical pattern and does not represent 
random behavior either. As illustrated in the two examples earlier, too few or too 
many runs lack randomness.
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where

 h R n n n n= + < + +0 5 2 11 2 1 2. ( ( ) )if /  (9.4)

and

 h R n n n n= − > + +0 5 2 11 2 1 2. ( ( ) )if /  (9.5)

9.3.1 Sample Runs Test (Small Data Samples)

The following study seeks to examine gender bias in science instruction. A male 
science teacher was observed during a typical class discussion. The observer noted 
the gender of the student that the teacher called on to answer a question. In the course 
of 15 min, the teacher called on 10 males and 10 females. The observer noticed that 
the science teacher called on equal numbers of males and females, but he wanted to 
examine the data for a pattern. To determine if the teacher used a random order to 
call on students with regard to gender, he used a runs test for randomness. Using M 
for male and F for female, the sequence of student recognition by the teacher is 
MFFMFMFMFFMFFFMMFMMM.

9.3.1.1  State the Null and Research Hypotheses  The null hypothesis states 
that the sequence of events is random. The research hypothesis states that the 
sequence of events is not random.

The null hypothesis is

HO: The sequence in which the teacher calls on males and females is random.

The research hypothesis is

HA: The sequence in which the teacher calls on males and females is not random.

9.3.1.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

9.3.1.3  Choose  the  Appropriate  Test  Statistic  The observer is examining 
the data for randomness. Therefore, he is using a runs test for randomness.

9.3.1.4  Compute the Test Statistic  First, determine the number of runs, R. It 
is helpful to separate the events as shown in Figure 9.3. The number of runs in the 
sequence is R = 13.

FIGURE 9.3

9.3.1.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using  the Appropriate Table of Critical Values  for  the Particular Statistic 
Since the sample sizes are small, we refer to Table B.10 in Appendix B, which lists the 
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critical values for the runs test. There were 10 males (n1) and 10 females (n2). The 
critical values are found on the table at the point for n1 = 10 and n2 = 10. We set 
α = 0.05. The critical region for the runs test is 6 < R < 16. If the number of runs, 
R, is 6 or less, or 16 or greater, we reject our null hypothesis.

9.3.1.6  Compare  the Obtained Value with  the Critical Value  We found 
that R = 13. This value is within our critical region (6 < R < 16). Therefore, we do 
not reject the null hypothesis.

9.3.1.7  Interpret the Results  We did not reject the null hypothesis, suggesting 
that the sequence of events is random. Therefore, we can state that the order in which 
the science teacher calls on males and females is random.

9.3.1.8  Reporting the Results  The reporting of results for the runs test should 
include such information as the sample sizes for each group, the number of runs, 
and the p-value with respect to α.

For this example, the runs test indicated that the sequence was random (R = 13, 
n1 = 10, n2 = 10, p > 0.05). Therefore, the study provides evidence that the science 
teacher was demonstrating no gender bias.

9.3.2 Performing the Runs Test Using SPSS

We will analyze the data from the example earlier using SPSS.

9.3.2.1  Define  Your  Variables  First, click the “Variable View” tab at the 
bottom of your screen. Then, type the names of your variables in the “Name” 
column. As seen in Figure 9.4, we call our variable “gender.”

FIGURE 9.4

Next, we establish a grouping variable to differentiate between males and females. 
When establishing a grouping variable, it is often easiest to assign each group a 
whole number value. As shown in Figure 9.5, our groups are “male” and “female.” 
First, we select the “Values” column and click the gray square. Then, we set a value 
of 0 to represent “male” and a value of 2 to represent “female.” We use the “Add” 
button to move each of the value labels to the list. We did not choose the value of 
1 since we will use it in step 3 as a reference (custom value) to com pare the events. 
Once we finish, we click the “OK” button to return to the SPSS Variable View.
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FIGURE 9.5

FIGURE 9.6

9.3.2.2  Type in Your Values  Click the “Data View” tab at the bottom of your 
screen (see Figure 9.6). Type the values into the column in the same order they 
occurred. Remember that we type 0 for “male” and 2 for “female.”

9.3.2.3  Analyze Your Data  As shown in Figure 9.7, use the pull-down menus 
to choose “Analyze,” “Nonparametric Tests,” “Legacy Dialogs,” and “Runs. . . .”



9.3 The Runs TesT foR Randomness 215

FIGURE 9.7

The runs test required a reference point to compare the events. As shown in 
Figure 9.8 under “Cut Point,” uncheck “Median” and check the box next to “Custom:.” 
Type a value in the box that is between the events’ assigned values. For our example, 
we used 0 and 2 for the events’ values, so type a custom value of 1. Next, select the 

FIGURE 9.8
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SPSS OUTPUT 9.1

FIGURE 9.9

variable and use the arrow button to place it with your data values in the box labeled 
“Test Variable List.” In our example, we choose the variable “gender.” Finally, click 
“OK” to perform the analysis.

9.3.2.4  Interpret  the  Results  from  the  SPSS  Output  Window  The runs 
test output table (see SPSS Output 9.1) returns the total number of observations 
(N  =  20) and the number of runs (R  =  13). SPSS also calculates the z-score 
(z* = 0.689) and the two-tailed significance (p = 0.491).

9.3.2.5  Determine the Observation Frequencies for Each Event  In order 
to determine the number of observations for each event, an additional set of steps is 
required. As shown in Figure 9.9, use the pull-down menus to choose “Analyze,” 
“Descriptive Statistics,” and “Frequencies. . . .”

Next, use the arrow button to place the variable with your data values in the 
box labeled “Variable(s):” as shown in Figure 9.10. Like before, we choose the vari-
able “gender.” Finally, click “OK” to perform the analysis.

The second output table (see SPSS Output 9.2) displays the frequencies for 
each event. Based on the results from SPSS, the runs test indicated that the sequence 
was random (R = 13, n1 = 10, n2 = 10, p > 0.05). Therefore, the science teacher 
randomly chose between males and females when calling on students.
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FIGURE 9.10

SPSS OUTPUT 9.2

9.3.3 Sample Runs Test (Large Data Samples)

The previous study investigating gender bias was replicated. This time, however, a 
different male teacher was observed and the observation occurred over a longer 
period of time. As before, the observer noted the gender of the student that the 
teacher called on to answer a question. In the course of 30 min, the teacher called 
on 23 males and 14 females. We will once again examine the data for a pattern and 
use a runs test to examine student recognition with respect to gender. This time, 
however, we will use a large sample approximation since at least one sample size is 
large. Using M for male and F for female, the sequence of student recognition by 
the teacher is FFMMFFFMFFFMMFMMMMFMMMMMMFMFMMFMMMMMF.

9.3.3.1  State the Null and Research Hypotheses  The null hypothesis states 
that the sequence of events is random. The research hypothesis states that the 
sequence of events is not random.

The null hypothesis is

HO: The sequence in which the teacher calls on males and females is random.

The research hypothesis is

HA: The sequence in which the teacher calls on males and females is not random.
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9.3.3.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

9.3.3.3  Choose  the  Appropriate  Test  Statistic  The observer is examining 
the data for randomness. Therefore, he is using a runs test for randomness.

9.3.3.4  Compute the Test Statistic  First, determine the number of runs, R. It 
is helpful to separate the events as shown in Figure 9.11. The number of runs in the 
sequence is R = 17.

FIGURE 9.11

Our number of values exceeds those available from our critical value table for 
the runs test (Table B.10 in Appendix B is limited to n1 ≤ 20 and n2 ≤ 20). Therefore, 
we will find a z-score for our data using a normal approximation. First, we must find 
the mean xR and the standard deviation sR for the data:
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Next, we calculate a z-score. We use the correction for continuity, mean, standard 
deviation, and number of runs (R = 17) to calculate a z-score. The only value that 
we still need is the correction for continuity h. Recall that h = +0.5 if R < (2n1n2/
(n1 + n2) + 1), and h = −0.5 if R > (2n1n2/(n1 + n2) + 1). In our example, 2n1n2/
(n1  +  n2)  +  1  =  2(23)(14)/(23  +  14)  +  1  =  18.4. Since 17  <  18.4, we choose 
h = +0.5.
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Now, we use our z-score formula with correction for continuity:
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9.3.3.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic 
Table B.1 in Appendix B is used to establish the critical region of z-scores. For a 
two-tailed test with α = 0.05, we must not reject the null hypothesis if −1.96 ≤ 
z* ≤ 1.96.

9.3.3.6  Compare the Obtained Value with the Critical Value  We find that 
z* is within the critical region of the distribution, −1.96 ≤ −0.3196 ≤ 1.96. There-
fore, we do not reject the null hypothesis. This suggests that the order in which the 
science teacher calls on males and females is random.

9.3.3.7  Interpret the Results  We did not reject the null hypothesis, suggesting 
that the sequence of events is random. Therefore, our data indicate that the order in 
which the science teacher calls on males and females is random.

9.3.3.8  Reporting the Results  Based on our analysis, the runs test indicated 
that the sequence was random (R = 17, n1 = 23, n2 = 14, p > 0.05). Therefore, the 
study provides evidence that the science teacher was demonstrating no gender bias.

9.3.4 Sample Runs Test Referencing a Custom Value

The science teacher in the earlier example wishes to examine the pattern of an “at-
risk” student’s weekly quiz performance. A passing quiz score is 70. Sometimes the 
student failed and other times he passed. The teacher wished to determine if the 
student’s performance is random or not. Table 9.1 shows the student’s weekly quiz 
scores for a 12-week period.

TABLE 9.1

Week Student quiz scores

1 65

2 55

3 95

4 15

5 75

6 65

7 80

8 75

9 60

10 55

11 75

12 80
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9.3.4.1  State the Null and Research Hypotheses  The null hypothesis states 
that the sequence of events is random. The research hypothesis states that the 
sequence of events is not random.

The null hypothesis is

HO: The sequence in which the student passes and fails a weekly science quiz 
is random.

The research hypothesis is

HA: The sequence in which the student passes and fails a weekly science quiz 
is not random.

9.3.4.2  Set the Level of Risk (or the Level of Significance) Associated with 
the Null Hypothesis  The level of risk, also called an alpha (α), is frequently set 
at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 
that any observed statistical difference will be real and not due to chance.

9.3.4.3  Choose  the  Appropriate  Test  Statistic  The observer is examining 
the data for randomness. Therefore, he is using a runs test for randomness.

9.3.4.4  Compute the Test Statistic  The custom value is 69.9 since a passing 
quiz score is 70. We must identify which quiz scores fall above the custom score 
and which quiz scores fall below it. As shown in Table 9.2, we mark the quiz 
scores that fall above the custom score with + and the quiz scores that fall below 
with −.

Then, we count the number of runs, R. The number of runs in the sequence 
earlier is R = 8.

TABLE 9.2

Week Student quiz scores Relation to custom score

1 65 −
2 55 −
3 95 +
4 15 −
5 75 +
6 65 −
7 80 +
8 75 +
9 60 −

10 55 −
11 70 +
12 80 +
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9.3.4.5  Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic 
Since the sample sizes are small, we refer to Table B.10 in Appendix B, which lists 
the critical values for the runs test. The critical values are found on the table at the 
point for n1 = 6 and n2 = 6. We set α = 0.05. The critical region for the runs test 
is 3 < R < 11. If the number of runs, R, is 3 or less, or 11 or greater, we reject our 
null hypothesis.

9.3.4.6  Compare  the Obtained Value with  the Critical Value  We found 
that R = 8. This value is within our critical region (3 < R < 11). Therefore, we must 
not reject the null hypothesis.

9.3.4.7  Interpret the Results  We did not reject the null hypothesis, suggesting 
that the sequence of events is random. Therefore, we can state that based on a passing 
score of 70, the student’s weekly science quiz performance is random.

9.3.4.8  Reporting  the Results  For this example, the runs test indicated that 
the sequence was random (R = 8, n1 = 6, n2 = 6, p > 0.05). Therefore, the evidence 
suggests that the pattern of the student’s weekly science quiz performance is random 
in terms of achieving a passing score of 70.

9.3.5 Performing the Runs Test for a Custom Value Using SPSS

We will analyze the data from the earlier example using SPSS.

9.3.5.1  Define  Your  Variables  First, click the “Variable View” tab at the 
bottom of your screen. As shown in Figure 9.12, type the names of your variables 
in the “Name” column. We call our variable “Quiz.”

FIGURE 9.12

9.3.5.2  Type in Your Values  Click the “Data View” tab at the bottom of your 
screen, as shown in Figure 9.13. Type the values into the column in the same order 
they occurred.
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FIGURE 9.13

FIGURE 9.14

9.3.5.3  Analyze Your Data  As shown in Figure 9.14, use the pull-down menus 
to choose “Analyze,” “Nonparametric Tests,” “Legacy Dialogs,” and “Runs. . . .”



9.3 The Runs TesT foR Randomness 223

As shown in Figure 9.15 under “Cut Point,” uncheck “Median” and check the 
box next to “Custom:.” Type the custom value in the box. For our example, we use 
a custom value of 69.9. Next, use the arrow button to place the variable with your 
data values in the box labeled “Test Variable List.” In our example, we choose the 
variable “Quiz.” Finally, click the “OK” button to perform the analysis.

FIGURE 9.15

SPSS OUTPUT 9.3

9.3.5.4  Interpret  the  Results  from  the  SPSS Output  Window  The runs 
test output table (see SPSS Output 9.3) returns the custom test value (69.9), the total 
number of observations (N = 12), and the number of runs (R = 8). SPSS also cal-
culates the z-score (z* = 0.303) and the two-tailed significance (p = 0.762).

9.3.5.5  Determine the Observation Frequencies for Each Event  In order 
to determine the number of observations for each event, an additional set of steps is 
required.

As shown in Figure 9.16, use the pull-down menus to choose “Analyze,” 
“Descriptive Statistics,” and “Frequencies. . . .”
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Next, use the arrow button to place the variable with your data values in the 
box labeled “Variable(s):,” as shown in Figure 9.17. The variable test is called 
“Quiz.” Finally, click “OK” to perform the analysis.

The second output table (see SPSS Output 9.4) displays the frequencies for 
each value. You must count the number of values above the custom value and the 
number values below it to determine the frequency for each event.

FIGURE 9.16

FIGURE 9.17

SPSS OUTPUT 9.4
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Based on the results from SPSS, the runs test indicated that the sequence was 
random (R = 8, n1 = 6, n2 = 6, p > 0.05). Therefore, the pattern of the student’s 
weekly science quiz performance is random in terms of achieving a passing score 
of 70.

9.4 EXAMPLES FROM THE LITERATURE

Listed are varied examples of the nonparametric procedures described in this chapter. 
We have summarized each study’s research problem and researchers’ rationale(s) 
for choosing a nonparametric approach. We encourage you to obtain these studies 
if you are interested in their results.

Dorsey-Palmateer and Smith (2004) called into question a classical statistics 
experiment that debunked a commonly held belief that basketball players’ shooting 
accuracy is based on the performance immediately preceding a given shot. The 
authors explored this notion of hot hands among professional bowlers. They exam-
ined a series of rolls and differentiate between strikes and nonstrikes. They used a 
runs test to analyze the sequence of bowlers’ performance for randomness.

Vergin (2000) explored the presence of momentum among Major League 
Baseball (MLB) teams and National Basketball Association (NBA) teams. He 
described momentum as the tendency for a winning team to continue to win and a 
losing team to continue to lose. Therefore, he used a Wald–Wolfowitz runs test to 
examine the winning and losing streaks of the 28 MLB teams in 1996 and of the 29 
NBA teams during the 1996–1997 and 1997–1998 seasons.

Pollay et al. (1992) investigated the possibility that cigarette companies seg-
regated and segmented advertising efforts toward black consumers. They used a runs 
test to compare the change in annual frequency of cigarette ads that appeared in Life 
Magazine versus Ebony.

9.5 SUMMARY

The runs test is a statistical procedure for examining a series of events for random-
ness. This nonparametric test has no parametric equivalent. In this chapter, we 
described how to perform and interpret a runs test for both small samples and large 
samples. We also explained how to perform the procedure using SPSS. Finally, we 
offered varied examples of these nonparametric statistics from the literature.

9.6 PRACTICE QUESTIONS

1. Represented in the data is the daily performance of a popular stock. Letter A 
represents a gain and letter B represents a loss. Use a runs test to analyze the 
stock’s performance for randomness. Set α = 0.05. Report the results.
BAABBAABBBBBAABAAAAB
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2. A machine on an automated assembly line produces a unique type of bolt. If the 
machine fails more than three times in an hour, the total production on the line 
is slowed down. The machine has often exceeded the number of acceptable fail-
ures for the last week. The machine is expensive and more cost-effective to repair, 
but the maintenance crew cannot find the problem. The plant manager asks you 
to determine if the failure rates are random or if a pattern exists. Table 9.3 shows 
the number of failures per hour for a 24-h period.

TABLE 9.3

Hour Number of failures

1 6

2 4

3 2

4 2

5 7

6 5

7 7

8 9

9 2

10 0

11 0

12 0

13 7

14 6

15 5

16 9

17 1

18 0

19 1

20 8

21 5

22 9

23 4

24 5

Use a runs test with a custom value of 3.1 to analyze the acceptable/unacceptable 
failure rate for randomness. Set α = 0.05. Report the results.
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SPSS OUTPUT 9.5A

SPSS OUTPUT 9.5B

SPSS OUTPUT 9.6A

The sequence of the stock’s gains and losses was random (R  =  9, n1  =  10, 
n2 = 10, p > 0.05).

2. The results from the analysis are displayed in SPSS Output 9.6a and SPSS Output 
9.6b.

9.7 SOLUTIONS TO PRACTICE QUESTIONS

1. The results from the analysis are displayed in SPSS Output 9.5a and SPSS Output 
9.5b.

The sequence of the machine’s acceptable/unacceptable failure rate was not 
random (R = 7, n1 = 9, n2 = 15, p < 0.05).
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SPSS OUTPUT 9.6B
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FIGURE A.1

A.1 INTRODUCTION

Statistical Package for Social Sciences, or SPSS®, is a powerful tool for performing 
statistical analyses. Once you learn some basics, you will be able to save hours  
of algebraic computations while producing meaningful results. This section of the 
appendices includes a very basic overview of SPSS. We recommend you also run 
the tutorial when the program initially starts. The tutorial offers you a more detailed 
description of how to use the program.

A.2 OPENING SPSS

Begin by launching SPSS like any normal application. After SPSS begins, a window 
will appear, as seen in Figure A.1. Choose “Type in data” and click “OK.” From this 
screen, you can also view the SPSS tutorial or open a file with existing data.

Nonparametric Statistics: A Step-by-Step Approach, Second Edition. Gregory W. Corder and 
Dale I. Foreman.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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A.3 INPUTTING DATA

The SPSS Data Editor window is shown in Figure A.2a. This window will allow 
you to type in your data. Notice the “Data View” and the “Variable View” tabs at 
the bottom of the window. Before inputting values, we must setup our variables.

1. Select the “Variable View” tab located at the bottom of the SPSS Data 
Editor window to define the characteristics of your variables.

2. Once you change the window to Variable View, as seen in Figure A.2b, type 
in the names for each variable in the “Names” field. SPSS will not accept 
spaces at this step, so use underscores. For example, use “Test_A” instead 
of “Test A.”

3. In the “Width” field, choose the maximum number of characters for each 
value.

FIGURE A.2a

FIGURE A.2b
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4. In the “Decimals” field, choose the number of decimals for each value. For 
the “Score” variable, we have changed the width to three characters and 
the decimals to 0, as seen in Figure A.2c.

5. Use the “Label” field to assign names to the variables. Those names will 
appear in the output report that SPSS returns after an analysis. In addition, 
the “Label” field will allow you to use spaces, unlike the “Name” field. 
Figure A.2d illustrates that “Teaching Method” will identify the “Method” 
variable in the SPSS output report.

FIGURE A.2c

FIGURE A.2d

6. Use the “Values” field to assign a value to categorical data. As shown in 
Figure A.2e, clicking on the gray box in the right side of the column will 
cause a new window to appear, which allows you to input your settings. As 
seen in Figure A.2e, the “One-on-One” teaching method is assigned a value 
of 1 and the “Small Group” teaching method is assigned a value of 2.

7. The “Align” field allows you to change the alignment of the values as they 
appear in the “Data view” tab.
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8. The “Measure” field allows you to select the type of scale. In Figure A.2f, 
we are preparing to change the “Method” variable from a scale to a nominal 
measure.

9. Finally, click on the “Data view” tab at the bottom of the screen and manu-
ally type in your data values or paste them from a spreadsheet. Figure A.2g 
shows the values entered into the Data Editor.

FIGURE A.2f

FIGURE A.2g

FIGURE A.2e
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FIGURE A.3

A.4 ANALYZING DATA

Choose “Analyze” from the pull-down menus at the top of the Data Editor window 
and select the appropriate test. In Figure A.3, notice that “Nonparametric Tests” has 
been selected. This menu presents all of the tests discussed in this book.

If your menu choices look slightly different than Figure A.3, it may be that 
you are using the student version of SPSS. The student version is far more power-
ful than most people will ever need, and even though the figures in this book are 
from the full version of SPSS, we doubt that you will notice any difference.

A.5 THE SPSS OUTPUT

Once SPSS has performed an analysis, a new window will appear called the “SPSS 
Viewer,” as seen in Figure A.4. The window is separated into two panes. The left 
pane is called the outline pane and shows all of the information stored in the viewer. 
The pane to the right is called the contents pane and shows the actual output of the 
analysis.

You may wish to include any tables or graphs from the output pane in a report. 
You can select the objects in the contents pane and copy them onto a word process-
ing document. The small red arrow identifies the selected object.
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FIGURE A.4
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FIGURE B.1

Smaller
area

Larger
area

y

z-score

TABLE B.1 The Normal Distribution.

z-score Smaller area Larger area y

0.00 0.5000 0.5000 0.3989

0.01 0.4960 0.5040 0.3989

0.02 0.4920 0.5080 0.3989

0.03 0.4880 0.5120 0.3988

0.04 0.4840 0.5160 0.3986

0.05 0.4801 0.5199 0.3984

0.06 0.4761 0.5239 0.3982

0.07 0.4721 0.5279 0.3980

0.08 0.4681 0.5319 0.3977

0.09 0.4641 0.5359 0.3973

0.10 0.4602 0.5398 0.3970

0.11 0.4562 0.5438 0.3965

0.12 0.4522 0.5478 0.3961

0.13 0.4483 0.5517 0.3956

0.14 0.4443 0.5557 0.3951

0.15 0.4404 0.5596 0.3945

(Continued)

Nonparametric Statistics: A Step-by-Step Approach, Second Edition. Gregory W. Corder and 
Dale I. Foreman.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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z-score Smaller area Larger area y

0.16 0.4364 0.5636 0.3939

0.17 0.4325 0.5675 0.3932

0.18 0.4286 0.5714 0.3925

0.19 0.4247 0.5753 0.3918

0.20 0.4207 0.5793 0.3910

0.21 0.4168 0.5832 0.3902

0.22 0.4129 0.5871 0.3894

0.23 0.4090 0.5910 0.3885

0.24 0.4052 0.5948 0.3876

0.25 0.4013 0.5987 0.3867

0.26 0.3974 0.6026 0.3857

0.27 0.3936 0.6064 0.3847

0.28 0.3897 0.6103 0.3836

0.29 0.3859 0.6141 0.3825

0.30 0.3821 0.6179 0.3814

0.31 0.3783 0.6217 0.3802

0.32 0.3745 0.6255 0.3790

0.33 0.3707 0.6293 0.3778

0.34 0.3669 0.6331 0.3765

0.35 0.3632 0.6368 0.3752

0.36 0.3594 0.6406 0.3739

0.37 0.3557 0.6443 0.3725

0.38 0.3520 0.6480 0.3712

0.39 0.3483 0.6517 0.3697

0.40 0.3446 0.6554 0.3683

0.41 0.3409 0.6591 0.3668

0.42 0.3372 0.6628 0.3653

0.43 0.3336 0.6664 0.3637

0.44 0.3300 0.6700 0.3621

0.45 0.3264 0.6736 0.3605

0.46 0.3228 0.6772 0.3589

0.47 0.3192 0.6808 0.3572

0.48 0.3156 0.6844 0.3555

0.49 0.3121 0.6879 0.3538

0.50 0.3085 0.6915 0.3521

0.51 0.3050 0.6950 0.3503

0.52 0.3015 0.6985 0.3485

0.53 0.2981 0.7019 0.3467

0.54 0.2946 0.7054 0.3448

0.55 0.2912 0.7088 0.3429

0.56 0.2877 0.7123 0.3410

0.57 0.2843 0.7157 0.3391

0.58 0.2810 0.7190 0.3372

TABLE B.1 (Continued)
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TABLE B.1 (Continued)

z-score Smaller area Larger area y

0.59 0.2776 0.7224 0.3352

0.60 0.2743 0.7257 0.3332

0.61 0.2709 0.7291 0.3312

0.62 0.2676 0.7324 0.3292

0.63 0.2643 0.7357 0.3271

0.64 0.2611 0.7389 0.3251

0.65 0.2578 0.7422 0.3230

0.66 0.2546 0.7454 0.3209

0.67 0.2514 0.7486 0.3187

0.68 0.2483 0.7517 0.3166

0.69 0.2451 0.7549 0.3144

0.70 0.2420 0.7580 0.3123

0.71 0.2389 0.7611 0.3101

0.72 0.2358 0.7642 0.3079

0.73 0.2327 0.7673 0.3056

0.74 0.2296 0.7704 0.3034

0.75 0.2266 0.7734 0.3011

0.76 0.2236 0.7764 0.2989

0.77 0.2206 0.7794 0.2966

0.78 0.2177 0.7823 0.2943

0.79 0.2148 0.7852 0.2920

0.80 0.2119 0.7881 0.2897

0.81 0.2090 0.7910 0.2874

0.82 0.2061 0.7939 0.2850

0.83 0.2033 0.7967 0.2827

0.84 0.2005 0.7995 0.2803

0.85 0.1977 0.8023 0.2780

0.86 0.1949 0.8051 0.2756

0.87 0.1922 0.8078 0.2732

0.88 0.1894 0.8106 0.2709

0.89 0.1867 0.8133 0.2685

0.90 0.1841 0.8159 0.2661

0.91 0.1814 0.8186 0.2637

0.92 0.1788 0.8212 0.2613

0.93 0.1762 0.8238 0.2589

0.94 0.1736 0.8264 0.2565

0.95 0.1711 0.8289 0.2541

0.96 0.1685 0.8315 0.2516

0.97 0.1660 0.8340 0.2492

0.98 0.1635 0.8365 0.2468

0.99 0.1611 0.8389 0.2444

1.00 0.1587 0.8413 0.2420

(Continued)
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z-score Smaller area Larger area y

1.01 0.1562 0.8438 0.2396

1.02 0.1539 0.8461 0.2371

1.03 0.1515 0.8485 0.2347

1.04 0.1492 0.8508 0.2323

1.05 0.1469 0.8531 0.2299

1.06 0.1446 0.8554 0.2275

1.07 0.1423 0.8577 0.2251

1.08 0.1401 0.8599 0.2227

1.09 0.1379 0.8621 0.2203

1.10 0.1357 0.8643 0.2179

1.11 0.1335 0.8665 0.2155

1.12 0.1314 0.8686 0.2131

1.13 0.1292 0.8708 0.2107

1.14 0.1271 0.8729 0.2083

1.15 0.1251 0.8749 0.2059

1.16 0.1230 0.8770 0.2036

1.17 0.1210 0.8790 0.2012

1.18 0.1190 0.8810 0.1989

1.19 0.1170 0.8830 0.1965

1.20 0.1151 0.8849 0.1942

1.21 0.1131 0.8869 0.1919

1.22 0.1112 0.8888 0.1895

1.23 0.1093 0.8907 0.1872

1.24 0.1075 0.8925 0.1849

1.25 0.1056 0.8944 0.1826

1.26 0.1038 0.8962 0.1804

1.27 0.1020 0.8980 0.1781

1.28 0.1003 0.8997 0.1758

1.29 0.0985 0.9015 0.1736

1.30 0.0968 0.9032 0.1714

1.31 0.0951 0.9049 0.1691

1.32 0.0934 0.9066 0.1669

1.33 0.0918 0.9082 0.1647

1.34 0.0901 0.9099 0.1626

1.35 0.0885 0.9115 0.1604

1.36 0.0869 0.9131 0.1582

1.37 0.0853 0.9147 0.1561

1.38 0.0838 0.9162 0.1539

1.39 0.0823 0.9177 0.1518

1.40 0.0808 0.9192 0.1497

1.41 0.0793 0.9207 0.1476

1.42 0.0778 0.9222 0.1456

1.43 0.0764 0.9236 0.1435

TABLE B.1 (Continued)
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TABLE B.1 (Continued)

z-score Smaller area Larger area y

1.44 0.0749 0.9251 0.1415

1.45 0.0735 0.9265 0.1394

1.46 0.0721 0.9279 0.1374

1.47 0.0708 0.9292 0.1354

1.48 0.0694 0.9306 0.1334

1.49 0.0681 0.9319 0.1315

1.50 0.0668 0.9332 0.1295

1.51 0.0655 0.9345 0.1276

1.52 0.0643 0.9357 0.1257

1.53 0.0630 0.9370 0.1238

1.54 0.0618 0.9382 0.1219

1.55 0.0606 0.9394 0.1200

1.56 0.0594 0.9406 0.1182

1.57 0.0582 0.9418 0.1163

1.58 0.0571 0.9429 0.1145

1.59 0.0559 0.9441 0.1127

1.60 0.0548 0.9452 0.1109

1.61 0.0537 0.9463 0.1092

1.62 0.0526 0.9474 0.1074

1.63 0.0516 0.9484 0.1057

1.64 0.0505 0.9495 0.1040

1.65 0.0495 0.9505 0.1023

1.66 0.0485 0.9515 0.1006

1.67 0.0475 0.9525 0.0989

1.68 0.0465 0.9535 0.0973

1.69 0.0455 0.9545 0.0957

1.70 0.0446 0.9554 0.0940

1.71 0.0436 0.9564 0.0925

1.72 0.0427 0.9573 0.0909

1.73 0.0418 0.9582 0.0893

1.74 0.0409 0.9591 0.0878

1.75 0.0401 0.9599 0.0863

1.76 0.0392 0.9608 0.0848

1.77 0.0384 0.9616 0.0833

1.78 0.0375 0.9625 0.0818

1.79 0.0367 0.9633 0.0804

1.80 0.0359 0.9641 0.0790

1.81 0.0351 0.9649 0.0775

1.82 0.0344 0.9656 0.0761

1.83 0.0336 0.9664 0.0748

1.84 0.0329 0.9671 0.0734

1.85 0.0322 0.9678 0.0721

(Continued)
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z-score Smaller area Larger area y

1.86 0.0314 0.9686 0.0707

1.87 0.0307 0.9693 0.0694

1.88 0.0301 0.9699 0.0681

1.89 0.0294 0.9706 0.0669

1.90 0.0287 0.9713 0.0656

1.91 0.0281 0.9719 0.0644

1.92 0.0274 0.9726 0.0632

1.93 0.0268 0.9732 0.0620

1.94 0.0262 0.9738 0.0608

1.95 0.0256 0.9744 0.0596

1.96 0.0250 0.9750 0.0584

1.97 0.0244 0.9756 0.0573

1.98 0.0239 0.9761 0.0562

1.99 0.0233 0.9767 0.0551

2.00 0.0228 0.9772 0.0540

2.01 0.0222 0.9778 0.0529

2.02 0.0217 0.9783 0.0519

2.03 0.0212 0.9788 0.0508

2.04 0.0207 0.9793 0.0498

2.05 0.0202 0.9798 0.0488

2.06 0.0197 0.9803 0.0478

2.07 0.0192 0.9808 0.0468

2.08 0.0188 0.9812 0.0459

2.09 0.0183 0.9817 0.0449

2.10 0.0179 0.9821 0.0440

2.11 0.0174 0.9826 0.0431

2.12 0.0170 0.9830 0.0422

2.13 0.0166 0.9834 0.0413

2.14 0.0162 0.9838 0.0404

2.15 0.0158 0.9842 0.0396

2.16 0.0154 0.9846 0.0387

2.17 0.0150 0.9850 0.0379

2.18 0.0146 0.9854 0.0371

2.19 0.0143 0.9857 0.0363

2.20 0.0139 0.9861 0.0355

2.21 0.0136 0.9864 0.0347

2.22 0.0132 0.9868 0.0339

2.23 0.0129 0.9871 0.0332

2.24 0.0125 0.9875 0.0325

2.25 0.0122 0.9878 0.0317

2.26 0.0119 0.9881 0.0310

2.27 0.0116 0.9884 0.0303

2.28 0.0113 0.9887 0.0297

TABLE B.1 (Continued)



APPENDIX B  CRITICAL VALUE TABLES  241

TABLE B.1 (Continued)

z-score Smaller area Larger area y

2.29 0.0110 0.9890 0.0290

2.30 0.0107 0.9893 0.0283

2.31 0.0104 0.9896 0.0277

2.32 0.0102 0.9898 0.0270

2.33 0.0099 0.9901 0.0264

2.34 0.0096 0.9904 0.0258

2.35 0.0094 0.9906 0.0252

2.36 0.0091 0.9909 0.0246

2.37 0.0089 0.9911 0.0241

2.38 0.0087 0.9913 0.0235

2.39 0.0084 0.9916 0.0229

2.40 0.0082 0.9918 0.0224

2.41 0.0080 0.9920 0.0219

2.42 0.0078 0.9922 0.0213

2.43 0.0075 0.9925 0.0208

2.44 0.0073 0.9927 0.0203

2.45 0.0071 0.9929 0.0198

2.46 0.0069 0.9931 0.0194

2.47 0.0068 0.9932 0.0189

2.48 0.0066 0.9934 0.0184

2.49 0.0064 0.9936 0.0180

2.50 0.0062 0.9938 0.0175

2.51 0.0060 0.9940 0.0171

2.52 0.0059 0.9941 0.0167

2.53 0.0057 0.9943 0.0163

2.54 0.0055 0.9945 0.0158

2.55 0.0054 0.9946 0.0154

2.56 0.0052 0.9948 0.0151

2.57 0.0051 0.9949 0.0147

2.58 0.0049 0.9951 0.0143

2.59 0.0048 0.9952 0.0139

2.60 0.0047 0.9953 0.0136

2.61 0.0045 0.9955 0.0132

2.62 0.0044 0.9956 0.0129

2.63 0.0043 0.9957 0.0126

2.64 0.0041 0.9959 0.0122

2.65 0.0040 0.9960 0.0119

2.66 0.0039 0.9961 0.0116

2.67 0.0038 0.9962 0.0113

2.68 0.0037 0.9963 0.0110

2.69 0.0036 0.9964 0.0107

2.70 0.0035 0.9965 0.0104

(Continued)
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z-score Smaller area Larger area y

2.71 0.0034 0.9966 0.0101

2.72 0.0033 0.9967 0.0099

2.73 0.0032 0.9968 0.0096

2.74 0.0031 0.9969 0.0093

2.75 0.0030 0.9970 0.0091

2.76 0.0029 0.9971 0.0088

2.77 0.0028 0.9972 0.0086

2.78 0.0027 0.9973 0.0084

2.79 0.0026 0.9974 0.0081

2.80 0.0026 0.9974 0.0079

2.81 0.0025 0.9975 0.0077

2.82 0.0024 0.9976 0.0075

2.83 0.0023 0.9977 0.0073

2.84 0.0023 0.9977 0.0071

2.85 0.0022 0.9978 0.0069

2.86 0.0021 0.9979 0.0067

2.87 0.0021 0.9979 0.0065

2.88 0.0020 0.9980 0.0063

2.89 0.0019 0.9981 0.0061

2.90 0.0019 0.9981 0.0060

2.91 0.0018 0.9982 0.0058

2.92 0.0018 0.9982 0.0056

2.93 0.0017 0.9983 0.0055

2.94 0.0016 0.9984 0.0053

2.95 0.0016 0.9984 0.0051

2.96 0.0015 0.9985 0.0050

2.97 0.0015 0.9985 0.0048

2.98 0.0014 0.9986 0.0047

2.99 0.0014 0.9986 0.0046

3.00 0.0013 0.9987 0.0044

3.10 0.0010 0.9990 0.0033

3.20 0.0007 0.9993 0.0024

3.30 0.0005 0.9995 0.0017

3.50 0.0002 0.9998 0.0009

3.75 0.0001 0.9999 0.0004

4.00 0.0000 1.0000 0.0001

Source: Adapted by the authors from Hastings (1955).

TABLE B.1 (Continued)
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TABLE B.2 The χ2 Distribution.

df 0.99 0.975 0.95 0.9 0.1 0.05 0.025 0.01

1 0.00 0.00 0.00 0.02 2.71 3.84 5.02 6.63

2 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21

3 0.11 0.22 0.35 0.58 6.25 7.81 9.35 11.34

4 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28

5 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09

6 0.87 1.24 1.64 2.20 10.64 12.59 14.45 16.81

7 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48

8 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09

9 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67

10 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21

11 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73

12 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22

13 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69

14 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14

15 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58

16 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00

17 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41

18 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81

19 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19

20 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57

21 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93

22 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29

23 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64

24 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98

25 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31

26 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64

27 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96

28 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28

29 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59

30 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89
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TABLE B.3 Critical Values for the Wilcoxon Signed Rank Test Statistics T.

n
αtwo-tailed ≤ 0.10
αone-tailed ≤ 0.05

αtwo-tailed ≤ 0.05
αone-tailed ≤ 0.025

αtwo-tailed ≤ 0.02
αone-tailed ≤ 0.01

αtwo-tailed ≤ 0.01
αone-tailed ≤ 0.005

5 0

6 2 0

7 3 2 0

8 5 3 1 0

9 8 5 3 1

10 10 8 5 3

11 13 10 7 5

12 17 13 9 7

13 21 17 12 9

14 25 21 15 12

15 30 25 19 15

16 35 29 23 19

17 41 34 27 23

18 47 40 32 27

19 53 46 37 32

20 60 52 43 37

21 67 58 49 42

22 75 65 55 48

23 83 73 62 54

24 91 81 69 61

25 100 89 76 68

26 110 98 84 75

27 119 107 92 83

28 130 116 101 91

29 140 126 110 100

30 151 137 120 109

Source: Adapted from McCornack, R. L. (1965). Extended tables of the Wilcoxon matched pair signed rank statistic. 
Journal of the American Statistical Association, 60, 864–871. Reprinted with permission from The Journal of the 
American Statistical Association. Copyright 1965 by the American Statistical Association. All rights reserved.
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TABLE B.4 Critical Values for the Mann–Whitney U-Test Statistic.

α m

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.10 1
2

3 0 1
4 0 1 3

5 1 2 4 5

6 1 3 5 7 9
7 1 4 6 8 11 13

8 2 5 7 10 13 16 19
9 0 2 5 9 12 15 18 22 25

10 0 3 6 10 13 17 21 24 28 32
11 0 3 7 11 15 19 23 27 31 36 40

12 0 4 8 12 17 21 26 30 35 39 44 49
13 0 4 9 13 18 23 28 33 38 43 48 53 58

14 0 5 10 15 20 25 31 36 41 47 52 58 63 69

15 0 5 10 16 22 27 33 39 45 51 57 63 68 74 80
16 0 5 11 17 23 29 36 42 48 54 61 67 74 80 86 93

17 0 6 12 18 25 31 38 45 52 58 65 72 79 85 92 99 106
18 0 6 13 20 27 34 41 48 55 62 69 77 84 91 98 106 113 120

19 1 7 14 21 28 36 43 51 58 66 73 81 89 97 104 112 120 128 135
20 1 7 15 22 30 38 46 54 62 70 78 86 94 102 110 119 127 135 143 151

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.05 1

2

3 0

4 0 1

5 0 1 2 4

6 0 2 3 5 7

7 0 2 4 6 8 11

8 1 3 5 8 10 13 15

9 1 4 6 9 12 15 18 21

10 1 4 7 11 14 17 20 24 27

11 1 5 8 12 16 19 23 27 31 34

12 2 5 9 13 17 21 26 30 34 38 42

13 2 6 10 15 19 24 28 33 37 42 47 51

14 3 7 11 16 21 26 31 36 41 46 51 56 61

15 3 7 12 18 23 28 33 39 44 50 55 61 66 72

16 3 8 14 19 25 30 36 42 48 54 60 65 71 77 83

17 3 9 15 20 26 33 39 45 51 57 64 70 77 83 89 96

18 4 9 16 22 28 35 41 48 55 61 68 75 82 88 95 102 109

19 0 4 10 17 23 30 37 44 51 58 65 72 80 87 94 101 109 116 123

20 0 4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 138

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(Continued)



α m

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.025 1

2

3

4 0

5 0 1 2

6 1 2 3 5

7 1 3 5 6 8

8 0 2 4 6 8 10 13

9 0 2 4 7 10 12 15 17

10 0 3 5 8 11 14 17 20 23

11 0 3 6 9 13 16 19 23 26 30

12 1 4 7 11 14 18 22 26 29 33 37

13 1 4 8 12 16 20 24 28 33 37 41 45

14 1 5 9 13 17 22 26 31 36 40 45 50 55

15 1 5 10 14 19 24 29 34 39 44 49 54 59 64

16 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75

17 2 6 11 17 22 28 34 39 45 51 57 63 69 75 81 87

18 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99

19 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113

20 2 8 14 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.01 1

2

3

4

5 0 1

6 1 2 3

7 0 1 3 4 6

8 0 2 4 6 7 9

9 1 3 5 7 9 11 14

10 1 3 6 8 11 13 16 19

11 1 4 7 9 12 15 18 22 25

12 2 5 8 11 14 17 21 24 28 31

13 0 2 5 9 12 16 20 23 27 31 35 39

14 0 2 6 10 13 17 22 26 30 34 38 43 47

15 0 3 7 11 15 19 24 28 33 37 42 47 51 56

16 0 3 7 12 16 21 26 31 36 41 46 51 56 61 66

17 0 4 8 13 18 23 28 33 38 44 49 55 60 66 71 77

18 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88

19 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101

20 1 5 10 16 22 28 34 40 47 53 60 67 73 80 87 93 100 107 114

Source: Adapted from Milton, R. C. (1964). An extended table of critical values for the Mann-Whitney (Wilcoxon) 
two-sample statistic. Journal of the American Statistical Association, 59, 925–934. Reprinted with permission from 
The Journal of the American Statistical Association. Copyright 1964 by the American Statistical Association. All 
rights reserved.

TABLE B.4 (Continued)
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TABLE B.5 Critical Values for the Friedman Test Statistic Fr.

k N α ≤ 0.10 α ≤ 0.05 α ≤ 0.025 α ≤ 0.01

3 3 6.000 6.000
4 6.000 6.500 8.000 8.000

5 5.200 6.400 7.600 8.400
6 5.333 7.000 8.333 9.000

7 5.429 7.143 7.714 8.857

8 5.250 6.250 7.750 9.000
9 5.556 6.222 8.000 8.667

10 5.000 6.200 7.800 9.600
11 4.909 6.545 7.818 9.455

12 5.167 6.500 8.000 9.500
13 4.769 6.000 7.538 9.385

14 5.143 6.143 7.429 9.000
15 4.933 6.400 7.600 8.933

4 2 6.000 6.000

3 6.600 7.400 8.200 9.000

4 6.300 7.800 8.400 9.600

5 6.360 7.800 8.760 9.960

6 6.400 7.600 8.800 10.200

7 6.429 7.800 9.000 10.371

8 6.300 7.650 9.000 10.500

9 6.467 7.800 9.133 10.867

10 6.360 7.800 9.120 10.800

11 6.382 7.909 9.327 11.073

12 6.400 7.900 9.200 11.100

13 6.415 7.985 7.369 11.123

14 6.343 7.886 9.343 11.143

15 6.440 8.040 9.400 11.240

5 2 7.200 7.600 8.000 8.000

3 7.467 8.533 9.600 10.133

4 7.600 8.800 9.800 11.200

5 7.680 8.960 10.240 11.680

6 7.733 9.067 10.400 11.867

7 7.771 9.143 10.514 12.114

8 7.800 9.300 10.600 12.300

9 7.733 9.244 10.667 12.444

10 7.760 9.280 10.720 12.480

6 2 8.286 9.143 9.429 9.714

3 8.714 9.857 10.810 11.762

4 9.000 10.286 11.429 12.714

5 9.000 10.486 11.743 13.229

6 9.048 10.571 12.000 13.619

7 9.122 10.674 12.061 13.857

(Continued)
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k N α ≤ 0.10 α ≤ 0.05 α ≤ 0.025 α ≤ 0.01

8 9.143 10.714 12.214 14.000

9 9.127 10.778 12.302 14.143

10 9.143 10.800 12.343 14.229

Source: Adapted from Martin, L., Leblanc, R., & Toan, N. K. (1993). Tables for the Friedman rank test. The 
Canadian Journal of Statistics / La Revue Canadienne de Statistique, 21(1), 39–43. Reprinted with permission from 
The Canadian Journal of Statistics. Copyright 1993 by the Statistical Society of Canada. All rights reserved.

TABLE B.5 (Continued)

TABLE B.6 The Critical Values for the Kruskal–Wallis H-Test Statistic.

(The Critical Values for the Kruskal–Wallis H-Test Statistic, k = 3).

n1 n2 n3 α ≤ 0.10 α ≤ 0.05 α ≤ 0.01

2 2 2 4.571429 – –

3 1 1 – – –

3 2 1 4.285714 – –

3 2 2 4.464286 4.714286 –

3 3 1 4.571429 5.142857 –

3 3 2 4.555556 5.361111 –

3 3 3 4.622222 5.600000 6.488889

4 2 1 4.500000 – –

4 2 2 4.458333 5.333333 –

4 3 1 4.055556 5.208333 –

4 3 2 4.511111 5.444444 6.444444

4 3 3 4.700000 5.790909 6.745455

4 4 1 4.166667 4.966667 6.666667

4 4 2 4.554545 5.454545 7.036364

4 4 3 4.545455 5.598485 7.143939

4 4 4 4.653846 5.692308 7.653846

5 2 1 4.200000 5.000000 –

5 2 2 4.373333 5.160000 6.533333

5 3 1 4.017778 4.871111 –

5 3 2 4.650909 5.250909 6.821818

5 3 3 4.533333 5.648485 7.078788

5 4 1 3.987273 4.985455 6.954545

5 4 2 4.540909 5.272727 7.204545

5 4 3 4.548718 5.656410 7.444872

5 4 4 4.668132 5.657143 7.760440

5 5 1 4.109091 5.127273 7.309091

5 5 2 4.623077 5.338462 7.338462

5 5 3 4.545055 5.626374 7.578022

5 5 4 4.522857 5.665714 7.791429

5 5 5 4.560000 5.780000 8.000000
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(Continued)

TABLE B.6 (Continued)

(The Critical Values for the Kruskal–Wallis H-Test Statistic, k = 3).

n1 n2 n3 α ≤ 0.10 α ≤ 0.05 α ≤ 0.01

6 2 1 4.200000 4.822222 –

6 2 2 4.436364 5.345455 6.654545

6 3 1 3.909091 4.854545 6.581818

6 3 2 4.681818 5.348485 6.969697

6 3 3 4.538462 5.615385 7.192308

6 4 1 4.037879 4.946970 7.083333

6 4 2 4.493590 5.262821 7.339744

6 4 3 4.604396 5.604396 7.467033

6 4 4 4.523810 5.666667 7.795238

6 5 1 4.128205 4.989744 7.182051

6 5 2 4.595604 5.318681 7.375824

6 5 3 4.535238 5.601905 7.590476

6 5 4 4.522500 5.660833 7.935833

6 5 5 4.547059 5.698529 8.027941

6 6 1 4.000000 4.857143 7.065934

6 6 2 4.438095 5.409524 7.466667

6 6 3 4.558333 5.625000 7.725000

6 6 4 4.547794 5.724265 8.000000

6 6 5 4.542484 5.764706 8.118954

6 6 6 4.538012 5.719298 8.222222

7 1 1 4.266667 – –

7 2 1 4.200000 4.706494 –

7 2 2 4.525974 5.142857 7.000000

7 3 1 4.173160 4.952381 6.649351

7 3 2 4.582418 5.357143 6.838828

7 3 3 4.602826 5.620094 7.227630

7 4 1 4.120879 4.986264 6.986264

7 4 2 4.549451 5.375981 7.304553

7 4 3 4.527211 5.623129 7.498639

7 4 4 4.562500 5.650000 7.814286

7 5 1 4.035165 5.063736 7.060597

7 5 2 4.484898 5.392653 7.449796

7 5 3 4.535238 5.588571 7.697143

7 5 4 4.541597 5.732773 7.931092

7 5 5 4.540056 5.707563 8.100840

7 6 1 4.032653 5.066667 7.254422

7 6 2 4.500000 5.357143 7.490476

7 6 3 4.550420 5.672269 7.756303

7 6 4 4.561625 5.705882 8.016340

7 6 5 4.559733 5.769925 8.156725
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(The Critical Values for the Kruskal–Wallis H-Test Statistic, k = 3).

n1 n2 n3 α ≤ 0.10 α ≤ 0.05 α ≤ 0.01

7 6 6 4.530075 5.730075 8.257143

7 7 1 3.985714 4.985714 7.157143

7 7 2 4.490546 5.398109 7.490546

7 7 3 4.590103 5.676937 7.809524

7 7 4 4.558897 5.765664 8.141604

7 7 5 4.545564 5.745564 8.244812

7 7 6 4.568027 5.792517 8.341497

7 7 7 4.593692 5.818182 8.378479

8 1 1 4.418182 – –

8 2 1 4.011364 4.909091 –

8 2 2 4.586538 5.355769 6.663462

8 3 1 4.009615 4.881410 6.804487

8 3 2 4.450549 5.315934 6.986264

8 3 3 4.504762 5.616667 7.254762

8 4 1 4.038462 5.043956 6.972527

8 4 2 4.500000 5.392857 7.350000

8 4 3 4.529167 5.622917 7.585417

8 4 4 4.560662 5.779412 7.852941

8 5 1 3.967143 4.868571 7.110000

8 5 2 4.466250 5.415000 7.440000

8 5 3 4.514338 5.614338 7.705515

8 5 4 4.549020 5.717647 7.992157

8 5 5 4.555263 5.769298 8.115789

8 6 1 4.014583 5.014583 7.256250

8 6 2 4.441176 5.404412 7.522059

8 6 3 4.573529 5.678105 7.795752

8 6 4 4.562865 5.742690 8.045322

8 6 5 4.550263 5.750263 8.210263

8 6 6 4.598810 5.770238 8.294048

8 7 1 4.045431 5.041229 7.307773

8 7 2 4.450980 5.403361 7.571429

8 7 3 4.555556 5.698413 7.827068

8 7 4 4.548496 5.759211 8.118045

8 7 5 4.550612 5.777449 8.241939

8 7 6 4.552876 5.781231 8.332715

8 7 7 4.573687 5.795031 8.356296

8 8 1 4.044118 5.039216 7.313725

8 8 2 4.508772 5.407895 7.653509

8 8 3 4.555263 5.734211 7.889474

8 8 4 4.578571 5.742857 8.167857

8 8 5 4.572727 5.761039 8.297403

TABLE B.6 (Continued)
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(Continued)

(The Critical Values for the Kruskal–Wallis H-Test Statistic, k = 3).

n1 n2 n3 α ≤ 0.10 α ≤ 0.05 α ≤ 0.01

8 8 6 4.572134 5.778656 8.366601

8 8 7 4.570652 5.791149 8.418866

8 8 8 4.595000 5.805000 8.465000

9 1 1 4.545455 – –

9 2 1 3.905983 4.841880 6.346154

9 2 2 4.483516 5.260073 6.897436

9 3 1 4.073260 4.952381 6.886447

9 3 2 4.492063 5.339683 6.990476

9 3 3 4.633333 5.588889 7.355556

9 4 1 3.971429 5.071429 7.171429

9 4 2 4.488889 5.400000 7.363889

9 4 3 4.514706 5.651961 7.613971

9 4 4 4.576253 5.703704 7.909586

9 5 1 4.055556 5.040000 7.148889

9 5 2 4.464706 5.395588 7.447059

9 5 3 4.587364 5.669717 7.733333

9 5 4 4.531384 5.712671 8.024561

9 5 5 4.557193 5.769825 8.169825

9 6 1 3.933824 5.049020 7.247549

9 6 2 4.481481 5.392157 7.494553

9 6 3 4.541910 5.664717 7.822612

9 6 4 4.545614 5.744737 8.108772

9 6 5 4.573651 5.761905 8.230794

9 6 6 4.554113 5.808081 8.307359

9 7 1 4.011204 5.042017 7.270464

9 7 2 4.480089 5.429128 7.636591

9 7 3 4.535338 5.656140 7.860652

9 7 4 4.547732 5.731406 8.131406

9 7 5 4.565492 5.757988 8.287941

9 7 6 4.570864 5.782985 8.353284

9 7 7 4.583851 5.802622 8.403037

9 8 1 3.986355 4.984893 7.394250

9 8 2 4.491667 5.419737 7.642105

9 8 3 4.568651 5.717460 7.927381

9 8 4 4.559163 5.744228 8.203102

9 8 5 4.551252 5.783465 8.318050

9 8 6 4.560688 5.775362 8.408514

9 8 7 4.563770 5.807579 8.450000

9 8 8 4.582821 5.809744 8.494359

9 9 1 4.007018 4.961404 7.333333

TABLE B.6 (Continued)
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(The Critical Values for the Kruskal–Wallis H-Test Statistic, k = 3).

n1 n2 n3 α ≤ 0.10 α ≤ 0.05 α ≤ 0.01

9 9 2 4.460317 5.411111 7.692063

9 9 3 4.565657 5.708514 7.959596

9 9 4 4.550066 5.751647 8.202240

9 9 5 4.587440 5.770048 8.370048

9 9 6 4.555556 5.814444 8.427778

9 9 7 4.567326 5.802198 8.468864

9 9 8 4.570750 5.815052 8.514720

9 9 9 4.582011 5.844797 8.564374

10 1 1 4.653846 4.653846 –

10 2 1 4.114286 4.839560 6.428571

10 2 2 4.434286 5.120000 6.537143

10 3 1 3.996190 5.076190 6.851429

10 3 2 4.470000 5.361667 7.041667

10 3 3 4.529412 5.588235 7.360294

10 4 1 4.042500 5.017500 7.105000

10 4 2 4.462500 5.344853 7.356618

10 4 3 4.587582 5.654248 7.616993

10 4 4 4.564912 5.715789 7.907018

10 5 1 3.988235 4.905882 7.107353

10 5 2 4.454902 5.388235 7.513725

10 5 3 4.552047 5.618713 7.752047

10 5 4 4.556842 5.744211 8.047895

10 5 5 4.574286 5.777143 8.162857

10 6 1 3.967320 5.041830 7.316340

10 6 2 4.479532 5.405848 7.588304

10 6 3 4.542105 5.655789 7.882105

10 6 4 4.550476 5.726190 8.142857

10 6 5 4.554978 5.754978 8.267532

10 6 6 4.575494 5.780237 8.338340

10 7 1 3.981454 4.985965 7.252130

10 7 2 4.491880 5.377444 7.641203

10 7 3 4.545034 5.698095 7.901224

10 7 4 4.550278 5.751206 8.172356

10 7 5 4.567250 5.763862 8.295652

10 7 6 4.563043 5.798758 8.376915

10 7 7 4.562286 5.796571 8.419429

10 8 1 3.963947 5.037632 7.358684

10 8 2 4.482857 5.429286 7.720714

10 8 3 4.533983 5.711688 7.977273

10 8 4 4.550988 5.744466 8.206126

10 9 5 4.556522 5.789130 8.344022

TABLE B.6 (Continued)
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(Continued)

TABLE B.6 (Continued)

(The Critical Values for the Kruskal–Wallis H-Test Statistic, k = 3).

n1 n2 n3 α ≤ 0.10 α ≤ 0.05 α ≤ 0.01

10 9 6 4.573333 5.793833 8.397833

10 9 7 4.564484 5.810637 8.480967

10 9 8 4.561538 5.829060 8.494017

10 9 1 4.025714 4.988571 7.436508

10 9 2 4.476479 5.446176 7.693795

10 9 3 4.570751 5.700659 7.997628

10 9 4 4.556401 5.757609 8.223430

10 9 5 4.547556 5.792000 8.380222

10 9 6 4.561231 5.813128 8.449436

10 9 7 4.559707 5.817610 8.507475

10 9 8 4.567063 5.833730 8.544489

10 9 9 4.578982 5.830706 8.575698

10 10 1 3.987013 5.054545 7.501299

10 10 2 4.477470 5.449802 7.726482

10 10 3 4.559420 5.687681 8.026087

10 10 4 4.567000 5.776000 8.263000

10 10 5 4.554462 5.793231 8.403692

10 10 6 4.561823 5.796011 8.472934

10 10 7 4.558277 5.820408 8.536508

10 10 8 4.565025 5.837438 8.565887

10 10 9 4.567050 5.837241 8.606130

10 10 10 4.583226 5.855484 8.640000

(The Critical Values for the Kruskal–Wallis H-Test Statistic, k = 4.)

n1 n2 n3 n4 α ≤ 0.10 α ≤ 0.05 α ≤ 0.01

2 2 2 1 5.357143 5.678571 –

2 2 2 2 5.666667 6.166667 6.666667

3 2 1 1 4.892857 – –

3 2 2 1 5.555556 5.833333 –

3 2 2 2 5.644444 6.333333 7.133333

3 3 1 1 5.333333 6.333333 –

3 3 2 1 5.622222 6.244444 7.044444

3 3 2 2 5.745455 6.527273 7.636364

3 3 3 1 5.654545 6.600000 7.400000

3 3 3 2 5.878788 6.727273 8.015152

3 3 3 3 5.974359 6.897436 8.435897

4 2 1 1 5.250000 5.833333 –

4 2 2 1 5.533333 6.133333 7.000000

4 2 2 2 5.754545 6.545455 7.390909

4 3 1 1 5.066667 6.177778 7.066667
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(The Critical Values for the Kruskal–Wallis H-Test Statistic, k = 4.)

n1 n2 n3 n4 α ≤ 0.10 α ≤ 0.05 α ≤ 0.01

4 3 2 1 5.572727 6.309091 7.454545

4 3 2 2 5.750000 6.621212 7.871212

4 3 3 1 5.666667 6.545455 7.757576

4 3 3 2 5.858974 6.782051 8.320513

4 3 3 3 6.000000 6.967033 8.653846

4 4 1 1 5.181818 5.945455 7.909091

4 4 2 1 5.568182 6.386364 7.909091

4 4 2 2 5.807692 6.730769 8.346154

4 4 3 1 5.660256 6.634615 8.217949

4 4 3 2 5.901099 6.873626 8.620879

4 4 3 3 6.004762 7.038095 8.866667

4 4 4 1 5.653846 6.725275 8.587912

4 4 4 2 5.914286 6.957143 8.871429

4 4 4 3 6.029167 7.129167 9.075000

4 4 4 4 6.088235 7.235294 9.286765

5 1 1 1 5.333333 – –

5 2 1 1 5.266667 5.960000 –

5 2 2 1 5.541818 6.109091 7.276364

5 2 2 2 5.636364 6.563636 7.772727

5 3 1 1 5.130909 6.003636 7.400000

5 3 2 1 5.518182 6.363636 7.757576

5 3 2 2 5.771795 6.664103 8.202564

5 3 3 1 5.656410 6.641026 8.117949

5 3 3 2 5.865934 6.821978 8.606593

5 3 3 3 6.020952 7.011429 8.840000

5 4 1 1 5.254545 6.040909 7.909091

5 4 2 1 5.580769 6.419231 8.173077

5 4 2 2 5.782418 6.725275 8.472527

5 4 3 1 5.639560 6.681319 8.408791

5 4 3 2 5.901905 6.925714 8.801905

5 4 3 3 6.029167 7.093333 9.029167

5 4 4 1 5.674286 6.760000 8.725714

5 4 4 2 5.947500 6.990000 9.002500

5 4 4 3 6.035294 7.172794 9.220588

5 4 4 4 6.066667 7.262745 9.392157

5 5 1 1 5.153846 6.076923 8.107692

5 5 2 1 5.564835 6.540659 8.327473

5 5 2 2 5.794286 6.777143 8.634286

5 5 3 1 5.662857 6.737143 8.611429

5 5 3 2 5.921667 6.946667 8.946667

5 5 3 3 6.023529 7.117647 9.188235

TABLE B.6 (Continued)
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(The Critical Values for the Kruskal–Wallis H-Test Statistic, k = 4.)

n1 n2 n3 n4 α ≤ 0.10 α ≤ 0.05 α ≤ 0.01

5 5 4 1 5.670000 6.782500 8.870000

5 5 4 2 5.944853 7.032353 9.156618

5 5 4 3 6.052288 7.217647 9.356863

5 5 4 4 6.070175 7.291228 9.536842

5 5 5 1 5.682353 6.829412 9.052941

5 5 5 2 5.945098 7.074510 9.286275

5 5 5 3 6.043275 7.250292 9.495906

5 5 5 4 6.082105 7.327895 9.669474

5 5 5 5 6.097143 7.377143 9.800000

Source: Adapted from Meyer, J. P., & Seaman, M. A. (2008, March). A comparison of the exact Kruskal-Wallis 
distribution to asymptotic approximations for N ≤ 105. Paper presented at the annual meeting of the American 
Educational Research Association, New York. Reprinted with permission of the authors.

TABLE B.6 (Continued)

TABLE B.7 Critical Values for the Spearman Rank-Order Correlation Coefficient rs.

n
αtwo-tailed ≤ 0.10
αone-tailed ≤ 0.05

αtwo-tailed ≤ 0.05
αone-tailed ≤ 0.025

αtwo-tailed ≤ 0.02
αone-tailed ≤ 0.01

αtwo-tailed ≤ 0.01
αone-tailed ≤ 0.005

4 1.000

5 0.900 1.000 1.000

6 0.829 0.886 0.943 1.000

7 0.714 0.786 0.893 0.929

8 0.643 0.738 0.833 0.881

9 0.600 0.700 0.783 0.833

10 0.564 0.648 0.745 0.794

11 0.536 0.618 0.709 0.755

12 0.503 0.587 0.671 0.727

13 0.484 0.560 0.648 0.703

14 0.464 0.538 0.622 0.675

15 0.443 0.521 0.604 0.654

16 0.429 0.503 0.582 0.635

17 0.414 0.485 0.566 0.615

18 0.401 0.472 0.550 0.600

19 0.391 0.460 0.535 0.584

20 0.380 0.447 0.520 0.570

21 0.370 0.435 0.508 0.556

22 0.361 0.425 0.496 0.544

23 0.353 0.415 0.486 0.532

(Continued)
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n
αtwo-tailed ≤ 0.10
αone-tailed ≤ 0.05

αtwo-tailed ≤ 0.05
αone-tailed ≤ 0.025

αtwo-tailed ≤ 0.02
αone-tailed ≤ 0.01

αtwo-tailed ≤ 0.01
αone-tailed ≤ 0.005

24 0.344 0.406 0.476 0.321

25 0.337 0.398 0.466 0.511

26 0.331 0.390 0.457 0.501

27 0.324 0.382 0.448 0.491

28 0.317 0.375 0.440 0.483

29 0.312 0.368 0.433 0.475

30 0.306 0.362 0.425 0.467

31 0.301 0.356 0.418 0.459

32 0.296 0.350 0.412 0.452

33 0.291 0.345 0.405 0.446

34 0.287 0.340 0.399 0.439

35 0.283 0.335 0.394 0.433

36 0.279 0.330 0.388 0.427

37 0.275 0.325 0.383 0.421

38 0.271 0.321 0.378 0.415

39 0.267 0.317 0.373 0.410

40 0.264 0.313 0.368 0.405

41 0.261 0.309 0.364 0.400

42 0.257 0.305 0.359 0.395

43 0.254 0.301 0.355 0.391

44 0.251 0.298 0.351 0.386

45 0.248 0.294 0.347 0.382

46 0.246 0.291 0.343 0.378

47 0.243 0.288 0.340 0.374

48 0.240 0.285 0.336 0.370

49 0.238 0.282 0.333 0.366

50 0.235 0.279 0.329 0.363

Source: Adapted from Zar, J. H. (1972). Significance testing of the Spearman rank correlation coefficient. Journal of 
the American Statistical Association, 67, 578–580. Reprinted with permission from The Journal of the American 
Statistical Association. Copyright 1972 by the American Statistical Association. All rights reserved.

TABLE B.7 (Continued)



APPENDIX B  CRITICAL VALUE TABLES  257

TABLE B.8 Critical Values for the Pearson Product-Moment Correlation Coefficient r.

df
αtwo-tailed ≤ 0.10
αone-tailed ≤ 0.05

αtwo-tailed ≤ 0.05
αone-tailed ≤ 0.025

αtwo-tailed ≤ 0.025
αone-tailed ≤ 0.0125

αtwo-tailed ≤ 0.01
αone-tailed ≤ 0.005

1 0.988 0.997 0.999 0.999

2 0.900 0.950 0.975 0.990

3 0.805 0.878 0.924 0.959

4 0.729 0.811 0.868 0.917

5 0.669 0.754 0.817 0.875

6 0.621 0.707 0.771 0.834

7 0.582 0.666 0.732 0.798

8 0.549 0.632 0.697 0.765

9 0.521 0.602 0.667 0.735

10 0.497 0.576 0.640 0.708

11 0.476 0.553 0.616 0.684O

12 0.458 0.532 0.594 0.661

13 0.441 0.514 0.575 0.641

14 0.426 0.497 0.557 0.623

15 0.412 0.482 0.541 0.606

16 0.400 0.468 0.526 0.590

17 0.389 0.456 0.512 0.575

18 0.378 0.444 0.499 0.561

19 0.369 0.433 0.487 0.549

20 0.360 0.423 0.476 0.537

21 0.352 0.413 0.466 0.526

22 0.344 0.404 0.456 0.515

23 0.337 0.396 0.447 0.505

24 0.330 0.388 0.439 0.496

25 0.323 0.381 0.430 0.487

26 0.317 0.374 0.423 0.479

27 0.311 0.367 0.415 0.471

28 0.306 0.361 0.409 0.463

29 0.301 0.355 0.402 0.456

30 0.296 0.349 0.396 0.449

31 0.291 0.344 0.390 0.442

32 0.287 0.339 0.384 0.436

33 0.283 0.334 0.378 0.430

34 0.279 0.329 0.373 0.424

35 0.275 0.325 0.368 0.418

36 0.271 0.320 0.363 0.413

37 0.267 0.316 0.359 0.408

38 0.264 0.312 0.354 0.403

39 0.260 0.308 0.350 0.398

40 0.257 0.304 0.346 0.393

41 0.254 0.301 0.342 0.389

(Continued)
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df
αtwo-tailed ≤ 0.10
αone-tailed ≤ 0.05

αtwo-tailed ≤ 0.05
αone-tailed ≤ 0.025

αtwo-tailed ≤ 0.025
αone-tailed ≤ 0.0125

αtwo-tailed ≤ 0.01
αone-tailed ≤ 0.005

42 0.251 0.297 0.338 0.384

43 0.248 0.294 0.334 0.380

44 0.246 0.291 0.330 0.376

45 0.243 0.288 0.327 0.372

46 0.240 0.285 0.323 0.368

47 0.238 0.282 0.320 0.365

48 0.235 0.279 0.317 0.361

49 0.233 0.276 0.314 0.358

50 0.231 0.273 0.311 0.354

TABLE B.8 (Continued)

TABLE B.9 Factorials.

n n!

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40,320

9 362,880

10 3,628,800

11 39,916,800

12 479,001,600

13 6,227,020,800

14 87,178,291,200

15 1,307,674,368,000

16 20,922,789,888,000

17 355,687,428,096,000

18 6,402,373,705,728,000

19 121,645,100,408,832,000

20 2,432,902,008,176,640,000

21 51,090,942,171,709,440,000

22 1,124,000,727,777,607,680,000

23 25,852,016,738,884,976,640,000

24 620,448,401,733,239,439,360,000

25 15,511,210,043,330,985,984,000,000
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TABLE B.10 Critical Values for the Runs Test for Randomness.

One-tailed alternative; α = 0.05.

n1

n2

2 3 4 5 6 7 8 9 10 11 12

2 – – – – – – 2 2 2 2 2
– – – – – – – – – – –

3 – – – 2 2 2 2 2 3 3 3

– – 7 – – – – – – – –

4 – – 2 2 3 3 3 3 3 3 4

– 7 8 9 9 9 – – – – –

5 – 2 2 3 3 3 3 4 4 4 4

– – 9 9 10 10 11 11 11 – –

6 – 2 3 3 3 4 4 4 5 5 5

– – 9 10 11 11 12 12 12 13 13

7 – 2 3 3 4 4 4 5 5 5 6

– – 9 10 11 12 13 13 13 14 14

8 2 2 3 3 4 4 5 5 6 6 6

– – – 11 12 13 13 14 14 15 15

9 2 2 3 4 4 5 5 6 6 6 7

– – – 11 12 13 14 14 15 15 16

10 2 3 3 4 5 5 6 6 6 7 7

– – – 11 12 13 14 15 16 16 17

11 2 3 3 4 5 5 6 6 7 7 8

– – – – 13 14 15 15 16 17 17

12 2 3 4 4 5 6 6 7 7 8 8

– – – – 13 14 15 16 17 17 18

One-tailed alternative; α = 0.025.

n1

n2

2 3 4 5 6 7 8 9 10 11 12

2 – – – – – – – – – – 2

– – – – – – – – – – –

3 – – – – 2 2 2 2 2 2 2

– – – – – – – – – – –

4 – – – 2 2 2 3 3 3 3 3

– – – 9 9 – – – – – –

5 – – 2 2 3 3 3 3 3 4 4

– – 9 10 10 11 11 – – – –

6 – 2 2 3 3 3 3 4 4 4 4

– – 9 10 11 12 12 13 13 13 13

7 – 2 2 3 3 3 4 4 5 5 5

– – – 11 12 13 13 14 14 14 14

(Continued)
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One-tailed alternative; α = 0.025.

n1

n2

2 3 4 5 6 7 8 9 10 11 12

8 – 2 3 3 3 4 4 5 5 5 6

– – – 11 12 13 14 14 15 15 16

9 – 2 3 3 4 4 5 5 5 6 6

– – – – 13 14 14 15 16 16 16

10 – 2 3 3 4 5 5 5 6 6 7

– – – – 13 14 15 16 16 17 17

11 – 2 3 4 4 5 5 6 6 7 7

– – – – 13 14 15 16 17 17 18

12 2 2 3 4 4 5 6 6 7 7 7

– – – – 13 14 16 16 17 18 19

Source: Adapted from tables D.5 and D.6 of Janke, S. J., & Tinsley, F. C. (2005). Introduction to Linear Models and 
Statistical Inference. Hoboken, NJ: John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons, Inc. 
Copyright 2005 by John Wiley & Sons, Inc. All rights reserved.

TABLE B.10 (Continued)
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Alpha (α), see Type I error
Alternate hypothesis, 4

Beta (β), see Type II error
Biserial correlation, 4, 150

small samples, 163–166
using SPSS, 167

Bonferroni correction procedure, 99, 105, 
119, 123

Categorical data, 2, 3
Chi-square distribution table, 243
Chi-square goodness-of-fit test, 4, 172

category frequencies equal, 173–176
category frequencies not equal, 176–180
computing, 173
using SPSS, 180–184

Chi-square test of independence, 4, 184–185
computing, 185–186
using SPSS, 191–196

Contingency tables, 2 × 2, 186, 197
Correlation coefficient, 140

biserial, 4, 150
of a dichotomous variable and a 

rank-order variable, 152
of a dichotomous variable and an interval 

scale variable, 150–152
point-biserial, 4, 150
Spearman rank-order, 4, 140

Counts, 8–9
Cramer’s V, 186
Critical value, 5–6

tables, 235–260
Cumulative frequency distributions, 27–29

Dichotomous scale, 2, 139, 150
continuous vs. discrete, 2

Divergence, 28

Effect size, 49, 79–80, 186
Cramer’s V, 186
phi coefficient, 186

Factorials, table, 258
Fisher exact test, 4, 196

computing, 197
using SPSS, 201–202

Friedman test, 3, 97
computing, 98–99
critical values table for, 247–248
large sample approximation, 108
post hoc test for, 99, 104
sample contrasts for, 99, 104
small samples with ties, 101
small samples without ties, 99
using SPSS, 105–108

Histogram, 15
Homogeneity of variance, 14

Interval scale, 2

Kolmogorov–Smirnov one-sample test, 27
computing, 27–29
using SPSS, 34–37

Kolmogorov–Smirnov two-sample test, 3, 69
computing, 80–81
using SPSS, 84–88

Kruskal–Wallis H test, 3, 117
computing, 118–119
correction for ties, 118
critical values table for, 248–255
large sample approximation, 128
post hoc test for, 123
sample contrasts for, 123
small data samples, 119
using SPSS, 124–128

INDEX
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Kurtosis, 17–19
computing, 19
leptokurtosis, 17–18
platykurtosis, 17–18
standard error of, 18–19
using SPSS, 24–27

Leptokurtosis, 17–18
Likert scale, 2, 5

Mann–Whitney U test, 3, 69
computing, 70–71
confidence interval for, 74–75
critical values table for, 245–256
large sample approximation, 75
small samples, 71
using SPSS, 84–88

Mean, 14
Measurement scale, 2
Median, 15
Mode, 15

Nominal data, 2
Nonparametric tests, comparison with 

parametric tests, 3–4
Normal curve, 14, 235

properties, 16–17
Normal distribution, 14–17

table, 235–242
Normality

assumptions, 1–2
measures, 14

Null hypothesis, 4

Observed frequency distribution, 27–28
Obtained value, 5, 6
Ordinal scale, 2
Ordinate of the normal curve, 17

computing, 151–152
table, 235–242

Outliers, 3

Parametric tests, 1–2
comparison with nonparametric 

tests, 3–4
Pearson product-moment correlation, 4, 

150
critical values table for, 257–258

Phi coefficient, 186
Platykurtosis, 17–18

Point-biserial correlation, 4, 150
large samples approximation, 142–146
small data samples, 159–163
using SPSS, 156–158

Post hoc comparisons, 99, 104
Power, see Statistical power

Randomness, see Runs test
Ranking data, 6–7

with tied values, 7–8
Rank-order scale, 2
Ratio scale, 2
Relative empirical frequency 

distribution, 28
Relative observed frequency 

distribution, 28
Runs test, 4, 210

computing, 211–212
critical values table for, 259–260
large sample approximation, 217–219
referencing a custom value, 219–221
referencing a custom value using 

SPSS, 221–225
small data samples, 212–213
using SPSS, 213–217

Sample size, 1
Sample contrasts, 99, 104
Scale, see Measurement scale
Sign test, 3, 49

computing, 49–50
large sample approximation, 53
small samples, 50
using SPSS, 57–60

Skewness, 17–19
computing, 19
standard error of, 19
using SPSS, 24–27

Spearman rank-order correlation, 4,  
140

computing, 141
computing Student’s t, 141–142
computing z, 141
critical values table for, 255–256
small data sample with ties, 145–148
small data sample without ties,  

142–145
using SPSS, 148–150

SPSS, 229–234
Standard deviation, 15
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Standard error
of kurtosis, 19
of skewness, 19

Statistical power, 60–61
Symmetry, 17

Transformation, 3
Type I error, 5, 99, 104
Type II error, 5

Variance, 14
homogeneity, 14

Wald–Wolfowitz test, 210
Wilcoxon rank sum test, 86, 89

Wilcoxon signed ranks test, 3, 39
computing, 40
confidence interval for, 44–45
critical values table for, 244
large sample approximation, 45
small samples, 41
using SPSS, 57–60

Wilcoxon W, 86

Yates’s continuity correction, 186

z-score, 16
table, 235–242
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